NH3(g) will take the shape of and completely fill a closed 100.0 milliliter container.
Answer: -105 kJ
Explanation:-
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times B.E(reactant)]-\sum [n\times B.E(product)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20B.E%28reactant%29%5D-%5Csum%20%5Bn%5Ctimes%20B.E%28product%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N_2})+(n_{H_2}\times B.E_{H_2}) ]-[(n_{NH_3}\times B.E_{NH_3})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN_2%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH_2%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%20B.E_%7BNH_3%7D%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N\equiv N})+(n_{H_2}\times B.E_{H-H}) ]-[(n_{NH_3}\times 3\times B.E_{N-H})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN%5Cequiv%20N%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH-H%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%203%5Ctimes%20B.E_%7BN-H%7D%29%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times 945)+(3\times 432)]-[(2\times 3\times 391)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20945%29%2B%283%5Ctimes%20432%29%5D-%5B%282%5Ctimes%203%5Ctimes%20391%29%5D)

Therefore, the enthalpy change for this reaction is, -105 kJ
No nkomkooehruurururuu is
2-A
1-B
5-C
4-D
3-E
I hope this helped:)
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L