Answer:

Step-by-step explanation:
42 ÷ 7 = 6
Each time you fold a paper it will double the amount of parts. When you think about it, it's just multiplying by 2 a bunch of times.
One fold is 2 times 1, which is 2.
The second fold is 2 times 2, which is 4.
The third fold is 4 times 2, which is 8.
Using this process, we can simplify that into exponents. If the amount of times you fold is x and the parts double for each fold, then the amount of parts can be represented by:

So if the amount of parts is given and we need the amount of folds, just keep doubling until you get to 64. The amount of times you doubled is the number of times Sylvie folded.
Later you will learn that the opposite of an exponent is a logarithm, which would look like this:

But don't worry about that yet.
x = -29
because
0.35x +1.4=0.25x-1.5
-0.25x -0.25x
_____________________
0.1x + 1.4 = -1.5
-1.4 -1.4
_________________________
0.1x =-2.9
____ _____
0.1 0.1
x = -29
Responder:
26,62
Explicación paso a paso:
Sea x el dinero original que tenía el jugador:
si un jugador pierde en su primer juego el 30% de su dinero, la cantidad perdida será;

Si en el segundo juego pierde el 50% de lo que perdió, entonces la cantidad perdida en el segundo juego será:

Si en el tercer juego pierde el 40% de todo lo que ha perdido, la cantidad perdida en el tercer juego será:

Si la cantidad que le queda para seguir apostando es de 37 soles, entonces para calcular la cantidad original que tiene, sumaremos toda la cantidad perdida y la cantidad restante y equipararemos la cantidad original x como se muestra:
0,3x + 0,15x + 0,2025x + 37 = x
0,6525x + 37 = x
x-0,6525x = 37
0,3475x = 37
x = 37 / 0,3475
x = 106,48
La cantidad que tenía originalmente era de 106,48
75% de 106,48
= 75/100 * 106,48
= 0,75 * 106,48
= 79,86
Tomando la diferencia entre su monto original y su 75% será:

Y = a(b^x)
y=mx + b is the equation of a line. It is a linear function because it has a constant rate of change.
y = a(b^x) is an exponential function because it has has an exponent and its rate of change is not constant