I would say CuSO4 or Copper Sulfate, as option 1 is Methane and would create a fire so heat, and the last one is Sugar which doesn't conduct electricity. And C6H6 I believe is not soluble in water.<span />
Answer:
97 J
Explanation:
Step 1: Given data
- Mass of the sample (m): 12 kg
- Specific heat capacity (c): 0.231 J/kg.°C (this can also be expressed as 0.231 J/kg.K)
- Initial temperature: 45 K
Step 2: Calculate the temperature change
ΔT = 80 K - 45 K = 35 K
Step 3: Calculate the heat required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.231 J/kg.K × 12 kg × 35 K = 97 J
Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.
The mole fraction of a product is the number of moles of the product divided by the total number of moles of the solution.
Here moles of methanol = 6.0 moles
Moles of solution = 6.0 moles of methanol + 3.0 moles of water = 9.0 moles of solution
Mole fraction of methanol = 6.0 / 9.0 = 0.67
Answer: 0.67