In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.
<h3>What are gravitational waves?</h3>
A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.
In conclusion, the merger of two black holes is the first direct detection of gravitational waves.
Read more about Wave
brainly.com/question/23271222
#SPJ1
In short, the key value added of CDR data over census or survey approaches is the potential to access current and comprehensive evidence on population size, density, and dynamics, information that is fundamentally necessary for managing any humanitarian emergency or disease-related disaster but which is often
Answer:
-67,500 kgm/s
Explanation:
1300 * 20 + 1100 * (-85) = -67,500 kgm/s
Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.
Answer:
the electric field strength on the second one is 2.67 N/C.
Explanation:
the electric fiel on the first one is:
E1 = k×q/(r^2)
r^2 = k×q/(E1)
= (9×10^9)×(q)/(24.0)
= 375000000q
then the electric field on the second one is:
E2 = k×q/(R^2)
we know that R = 3r
R^2 = 9×r^2
E2 = k×q/(9×r^2)
= k×q/(9×375000000q)
= k/(9×375000000)
= (9×10^9)/(9×375000000)
= 2.67 N/C
Therefore, the electric field strength on the second one is 2.67 N/C.