+
⇔
Decreasing the temperature of the reaction,the reaction shifts forward.
The explanation is given below.
Explanation:
If the temperature of the reaction mixture is increased,then the equilibrium will shift to decrease the temperature.
If the temperature of the reaction mixture is decreased,then the equilibrium will shift to increase the temperature.
During the formation of the ammonia,it gives off heat.So it is an exothermic reaction.
+
⇔
A decrease in the temperature favors the reaction that is exothermic (the forward reaction)because it produces energy.Therefore,if the temperature is decreased,the yield of the ammonia increases.
<em>Therefore if the temperature is increased,the reaction shifts forward and the yield of the ammonia increases and it is an exothermic reaction.</em>
It has 9 protons, 9 electrons and 10 neutrons.
Pressure since pressure is defined as force per unit area and the molecules exert a force on the walls of the container when they bombard it
The balanced nuclear equation for the reaction is
<h3>²³⁵₉₂U + ¹₀n —> ¹⁵⁵₆₂Sm + ⁷⁸₃₀Zn + 3(¹₀n)</h3>
From the question given above, we were told that:
<u>A fast-moving neutron strikes a ²³⁵U nucleus. The nucleus shatters producing ¹⁵⁵Sm, ⁷⁸Zn, and three neutrons.</u>
The nuclear equation can be written as follow:
Neutron => ¹₀n
Uranium => ²³⁵₉₂U
Samarium => ¹⁵⁵₆₂Sm
Zinc => ⁷⁸₃₀Zn
Uranium + neutron —> Samarium + Zinc + 3 moles of neutron
<h3>²³⁵₉₂U + ¹₀n —> ¹⁵⁵₆₂Sm + ⁷⁸₃₀Zn + 3(¹₀n)</h3>
The nuclear equation above is balanced.
Learn more: brainly.com/question/9943790
These gases very rarely react, with others and also noble gases are odourless and colourless.
Explanation:
- Noble gases will not react with anything so that is the reason why they are known as an inert gas.
- Noble gases are present in group 18 on the periodic table and following the rule of the octet which is they completed their orbital by s2p6 which is the highest energy level.
- Most elements are discovering through their reactivity with the other elements, commonly with oxygen. In the case of a noble gas, it is difficult for a scientist to work with the gases which have very less or no chemical property in terms of their reactivity.