Answer:I don’t know
Step-by-step explanation:
:/
Answer:22
Step-by-step explanation:
22
The answer would be positive 5
Answer:

The polynomial is an approximation with an error less than or equals to <em>0.002652</em> for x in the interval
[-1.113826815, 1.113826815]
Step-by-step explanation:
According to Taylor's theorem
with
for some c in the interval (-x, x)
In the particular case f
<em>f(x)=cos(x)
</em>
<em>
</em>
we have
therefore
and the polynomial approximation of T5(x) of cos(x) would be
In order to find all the values of x for which this approximation is within 0.002652 of the right answer, we notice that
for some c in (-x,x). So
and we must find the values of x for which
Working this inequality out, we find
Therefore the polynomial is an approximation with an error less than or equals to 0.002652 for x in the interval
[-1.113826815, 1.113826815]
<h3>
Answer: False</h3>
==============================================
Explanation:
I'm assuming you meant to type out
(y-2)^2 = y^2-6y+4
This equation is not true for all real numbers because the left hand side expands out like so
(y-2)^2
(y-2)(y-2)
x(y-2) .... let x = y-2
xy-2x
y(x)-2(x)
y(y-2)-2(y-2) ... replace x with y-2
y^2-2y-2y+4
y^2-4y+4
So if the claim was (y-2)^2 = y^2-4y+4, then the claim would be true. However, the right hand side we're given doesn't match up with y^2-4y+4
--------------------------
Another approach is to pick some y value such as y = 2 to find that
(y-2)^2 = y^2-6y+4
(2-2)^2 = 2^2 - 6(2) + 4 .... plug in y = 2
0^2 = 2^2 - 6(2) + 4
0 = 4 - 6(2) + 4
0 = 4 - 12 + 4
0 = -4
We get a false statement. This is one counterexample showing the given equation is not true for all values of y.