C would be missing. because when secondary succession occurs, it was previously occupied and re-colonized. im almost positive because i kind of remember doing this a few weeks ago. hope this helps a bit!
An earthworm is a terrestrial invertebrate that belongs to the phylum Annelida. They exhibit a tube-within-a-tube body plan, are externally segmented with corresponding internal segmentation, and usually have setae on all segments. They occur worldwide where soil, water, and temperature allow. Earthworms are commonly found in soil, eating a wide variety of organic matter. This organic matter includes plant matter, living protozoa, rotifers, nematodes, bacteria, fungi, and other microorganisms. An earthworm's digestive system runs the length of its body. It respires through its skin. It has a double transport system made of coelomic fluid that moves within the fluid-filled coelom and a simple, closed circulatory system. It has a central and peripheral nervous system. Its central nervous system consists of two ganglia above the mouth, one on either side, connected to a nerve running along its length to motor neurons and sensory cells in each segment. Large numbers of chemoreceptors concentrate near its mouth. Circumferential and longitudinal muscles edging each segment let the worm move. Similar sets of muscles line the gut, and their actions move digesting food toward the worm's anus.
Earthworms are hermaphrodites: each carries male and female sex organs. As invertebrates, they lack a true skeleton, but maintain their structure with fluid-filled coelom chambers that function as a hydrostatic skeleton.
On the surface, crawling speed varies both within and among individuals. Earthworms crawl faster primarily by taking longer "strides" and a greater frequency of strides. Larger Lumbricus terrestris worms crawl at a greater absolute speed than smaller worms. They achieve this by taking slightly longer strides but with slightly lower stride frequencies.
Touching an earthworm, which causes a "pressure" response as well as a response to the dehydrating quality of the salt on human skin, stimulates the subepidermal nerve plexus which connects to the intermuscular plexus and causes the longitudinal muscles to contract. This causes the writhing movements observed when a human picks up an earthworm. This behaviour is a reflex and does not require the CNS; it occurs even if the nerve cord is removed. Each segment of the earthworm has its own nerve plexus. The plexus of one segment is not connected directly to that of adjacent segments. The nerve cord is required to connect the nervous systems of the segments.
The giant axons carry the fastest signals along the nerve cord. These are emergency signals that initiate reflex escape behaviours. The larger dorsal giant axon conducts signals the fastest, from the rear to the front of the animal. If the rear of the worm is touched, a signal is rapidly sent forwards causing the longitudinal muscles in each segment to contract. This causes the worm to shorten very quickly as an attempt to escape from a predator or other potential threat. The two medial giant axons connect with each other and send signals from the front to the rear.
Hope this helps!
Answer:
Release or egress
Explanation:
Virus can reproduce only within a host cell, this cycle of infection begins with the <em>attachment</em>, where the virus attaches to a specific receptor site on the host cell, after this comes the<em> entry,</em> in the case of enveloped virus, the envelope can fuse directly with the cell membrane to enter the cell, they can also enter through endocytosis. After entering the cell the virus initiates a <em>replication and assembly </em>mechanism depending on its genome, finally, the last stage of viral replication is the <em>release or egress </em>of the new virions produced in the host organism, some viruses can be released when the host cell dies, but some can leave infected cells by budding through the membrane without directly killing the cell.
I hope you find this information useful and interesting! Good luck!
Answers:
a) carcinogenic
b) anti-carcinogenic
c) carcinogenic
d) carcinogenic
e) carcinogenic
f) anti-carcinogenic
g) anti-carcinogenic
h) anti-carcinogenic
Explanation:
Cyclins are proteins that regulate the progression through the cell cycle, i.e., the transition of G1 to S phase. It is well known that high cyclin expression may lead to cell proliferation states, which is closely associated with cancer progression. Moreover, the blockage of cyclins may have an anti-carcinogenic effect by inhibiting the progression through the cell cycle. MAP kinases are serine/threonine kinases that regulate the progression through the cell cycle by phosphorylating a variety of substrates during cell proliferation. In consequence, phosphatases that inactivate MAPK kinases (i.e., by dephosphorylation) may have an anticarcinogenic effect. The p53 is a tumor suppressor protein involved in diverse cellular processes including DNA repair, cycle arrest and programmed cell death. This protein (p53) is activated by phosphorylation at target residues and phosphatases inactivate it, thereby the blockage of its degradation may have an anticarcinogenic effect. Oncogene activation (i.e., the expression of oncogenes), may alter diverse cellular processes including DNA replication, and thereby may lead to cancer development. The G-protein α subunit is a GTPase that hydrolyses GTP and thus has a major role in controlling the kinetics of the G-protein signaling cascade. Platelet-derived growth factor receptors (PDGFR) are kinase receptors that play roles in regulating cellular differentiation, cell proliferation and cell growth. PDGFR receptors are present on the surface of normal cells, however, it has been shown that mutations of the PDGFR genes that lead to their high expression lead to uncontrolled cell growth and consequently cause cancer (i.e., by increasing PDGF signaling).
The answer would be A because a smaller population would die out faster. The best answer is A because they are more diverse which mean everyone is least likely to get the disease.