Answer:
True
Step-by-step explanation:
A six sigma level has a lower and upper specification limits between
and
. It means that the probability of finding no defects in a process is, considering 12 significant figures, for values symmetrically covered for standard deviations from the mean of a normal distribution:

For those with defects <em>operating at a 6 sigma level, </em>the probability is:

Similarly, for finding <em>no defects</em> in a 5 sigma level, we have:
.
The probability of defects is:

Well, the defects present in a six sigma level and a five sigma level are, respectively:
Then, comparing both fractions, we can confirm that a <em>6 sigma level is markedly different when it comes to the number of defects present:</em>
[1]
[2]
Comparing [1] and [2], a six sigma process has <em>2 defects per billion</em> opportunities, whereas a five sigma process has <em>600 defects per billion</em> opportunities.
Considering that the grows at a constant rate we can form an equation where x = how many years after it was planted
and y = its height
Now we just need to find how many feet it grows each year. To do that we just need to compare its height from a certain age to another:
6 years after it was planted : 7 feet,
so x=6 and y = 7
9 years after it was planted: 16 feet
so x= 9 y=16
With thay we can conclude that in 3 years , the tree grew 9 feet. To discover how much the tree grow each year we just nee to divide 9 feet by 3 years which is 3 feet every year.
To write the equatopn now we just need to find the y-intercept which we can discover by setting x to 0:
If in 6 years after the tree was planted it is 7 feet long , we can discover how long it was when it was planted by subtracting 6 years of growth (The slope ) which is 3
7 - 6(years)×3(feet the tree grow each year)
7 - 18 = -11
The tree was -11 feet long when it was planted
which is our y-intercept
( I know it doesnt make sense , but if you apply to a graph it will make more sense )
Now we can make the equation
y = 3x -11
The fewest number of expressions is 3.
She rode one ride every two.hours..sorry if i couldnt help