Answer:
See the explanation
Step-by-step explanation:
When the numerator is less than the denominator, the result is always less than 1, that is 0. something and this will give a percentage less than 100, but when the numerator is greater than the denominator, th result is greater than 1, and any figure greater than 1 gives a percentage that is greater than 100
example
Numerator >Denominator
=4/2*100
=2*100
=200%
Numerator <Denominator
=2/4*100
=0/5*100
=50%
Answer: option B. it has the highest y-intercept.
Explanation:
1) point -slope equation of the line
y - y₁ = m (x - x₁)
2) Replace (x₁, y₁) with the point (5,3):
y - 5 = m (x - 3)
3) Expand using distributive property and simplify:
y - 5 = mx - 3m ⇒ y = mx + 5 - 3m
4) Compare with the slope-intercept equation of the line: y = mx + b, where m is the slope and b is the y-intercept
⇒ slope = m
⇒ b = 5 - 3m = y - intercept.
Therefore, for the same point (5,3), the greater m (the slope of the line) the less b (the y-intercept); and the smaller m (the slope) the greater the y - intercept.
Then, the conclusion is: the linear function with the smallest slope has the highest y-intercept (option B).
Answer:
Both angles have a measure of 134degrees, y = 27degrees.
Step-by-step explanation:
As per what is given in the problem:
There are 2 parallel lines, both are intersected by a transversal.
Remember the theorem, when two parallel lines are intersected by a transversal, then the alternate exterior angles are congruent.
The is meanse that:
3y + 53 = 7y - 55
Solve using inverse operations:
3y + 53 = 7y - 55
+55 +55
3y + 108 = 7y
-3y -3y
108 = 4y
/4 /4
27 = y
Now, substitute back in to find the value of the angle:
3y + 53
y = 27
3 ( 27 ) + 53
81 + 53
= 134
Since the angles are alternate exterior, they are congruent, hence both angles have a measure of 134degrees.
Answer: the answer is B
Step-by-step explanation: