Answer:
xaubUajnaai ajn AJ au aun a
Explanation:
ahayba uabah an aj
Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.
Answer:
dissociation of acetic acid (like vinegar) in water
Explanation:
CH3COOH is basically vinegar (aka acetic acid)
dissociation of acetic acid in water
so when you put vinegar in water it makes 2 hydrogen ions (H+) and acetate ( CH3C00 ) a chemical that used in making film
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.
-- The long line and short line close together at the left side
of the diagram represent a single-cell battery.
It's the only one in this diagram.
It's a device that stores chemical energy and delivers it on demand.
-- The zig-zag lines with circles around them represent light bulbs.
There are three of them in this diagram.
They are devices used to produce light by dissipating electrical energy.
-- The zig-zag lines without circles, at the top of the diagram,
represent resistors.
There are two of them in this diagram.
They are devices used to change or control electrical parameters
within a circuit by dissipating electrical energy.
-- The short straight line between two small circles at the bottom
of the diagram represents a switch.
There is only one switch in this circuit.
It's a device used to easily and quickly start or stop the flow of current
past a certain point in a circuit.
In this circuit ...
-- When the switch is closed (as drawn), the light bulb nearest the battery
glows brightest, the light bulb in the middle glows less bright, and the light
bulb on the right side glows dimmest of all.
-- When the switch is open, the light bulb nearest the battery glows, and
neither of the other two light bulbs glows at all.