Answer:


Explanation:
In order to calculate the equivalent spring constant we need to use the next formula:

Replacing the data provided:


Finally, to calculate the frequency of oscillation we use this:

Replacing m and k:

Explanation:
It is given that,
Mass of an object, 
(a) Time period of oscillation, T = 2.4 s
The formula for the time period of spring is given by :

Where
k is the force constant



(b) Displacement in the spring, x = 2.2 m
Energy stored in the spring is given by :



Hence, this is the required solution.
<span> The right to form a militia and to keep and bear arms.
</span><span>
Powers not given to the federal government by the Constitution belong to the states or the people.</span><span>
Freedom of religion, freedom of speech and the press, the right to assemble, the right to petition government.
</span>
The two additional forces that act on the ball as it travels between the pitcher and the home plate are air resistance and gravity.
<h3>What are the forces that affect object in motion;</h3>
- Air resistance: this is the force that oppose the motion of an object in air due to frictional force
- Gravity: this is the force due to weight of the object and acts downwards.
The two additional forces that act on the ball as it travels between the pitcher and the home plate include:
- Air resistance and
- Gravitational force
<h3>How the forces affect the motion of the ball</h3>
- Air resistance oppose the motion of the ball as it travels in air.
- Gravity is the force due to weight of the ball and acts downwards.
Learn more about forces on object in motion here: brainly.com/question/10454047
Answer:
The acceleration at the astronaut's head decreases.
Explanation:
Since the centripetal acceleration equals acceleration due to gravity,
a = g = GM/R². since a changes infinitesimally from his foot to his head, we differentiate a with respect to r to get da/dr = -2GM/R³.
So, da, the change in acceleration = -2GMdR/R³ = -2gdR/R = -2 × 9.8/6.4 × 10⁶ m = -3.0625 × 10⁻⁶dR m/s².
Since dR = height of astronaut = 1.80 m, da = -3.0625 × 10⁻⁶ × 1.8 = -5.5125 × 10⁻⁶ m/s².
So the acceleration at the astronaut's head is g + da = 9.8 - 0.0000055125 = 9.7999944875 m/s².
So the acceleration at the astronaut's head decreases.