Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56
The body system on the chart
Answer:(a) 2.40 (b) horizontal distance. (c) 0.630. (d) 6.50
Explanation:that's all is talking about a speed and distance and time right
It’s both a solid and a liquid. It can thicken and soften depending on how it’s handled. It can be used to cover wounds to stop bleed, and used to drown enemies. Bungee Gum has the properties of both rubber and gum.