1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lubasha [3.4K]
4 years ago
5

Mathematics help please

Mathematics
1 answer:
Andrews [41]4 years ago
7 0
2. (-1-2^2•5)3^2


= -4509

You might be interested in
Is y=-3x^2 +10 a function
Sever21 [200]

Answer:

YES

Step-by-step explanation:

3 0
3 years ago
The defect length of a corrosion defect in a pressurized steel pipe is normally distributed with mean value 28 mm and standard d
Misha Larkins [42]

Answer:

14.69% probability that defect length is at most 20 mm

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

\mu = 28, \sigma = 7.6

What is the probability that defect length is at most 20 mm

This is the pvalue of Z when X = 20. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{20 - 28}{7.6}

Z = -1.05

Z = -1.05 has a pvalue of 0.1469

14.69% probability that defect length is at most 20 mm

5 0
4 years ago
Find the nth term of the sequence 7,25,51,85,127​
olya-2409 [2.1K]

Let <em>a </em>(<em>n</em>) denote the <em>n</em>-th term of the given sequence.

Check the forward differences, and denote the <em>n</em>-th difference by <em>b </em>(<em>n</em>). That is,

<em>b </em>(<em>n</em>) = <em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>)

These so-called first differences are

<em>b</em> (1) = <em>a</em> (2) - <em>a</em> (1) = 25 - 7 = 18

<em>b</em> (2) = <em>a</em> (3) - <em>a</em> (2) = 51 - 25 = 26

<em>b </em>(3) = <em>a</em> (4) - <em>a</em> (3) = 85 - 51 = 34

<em>b</em> (4) = <em>a </em>(5) - <em>a</em> (4) = 127 - 85 = 42

Now consider this sequence of differences,

18, 26, 34, 42, …

and notice that the difference between consecutive terms in this sequence <em>b</em> is 8:

26 - 18 = 8

34 - 26 = 8

42 - 34 = 8

and so on. This means <em>b</em> is an arithmetic sequence, and in particular follows the rule

<em>b</em> (<em>n</em>) = 18 + 8 (<em>n</em> - 1) = 8<em>n</em> + 10

for <em>n</em> ≥ 1.

So we have

<em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>) = 8<em>n</em> + 10

or, replacing <em>n</em> + 1 with <em>n</em>,

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8 (<em>n</em> - 1) + 10

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8<em>n</em> + 2

We can solve for <em>a</em> (<em>n</em>) by iteratively substituting:

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 2) + 8 (<em>n</em> - 1) + 2] + 8<em>n</em> + 2

<em>a</em> (<em>n</em>) = <em>a </em>(<em>n</em> - 2) + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> - 2) + 2] + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> + (<em>n</em> - 1) + (<em>n</em> - 2)) + 3×2

and so on. The pattern should be clear; we end up with

<em>a</em> (<em>n</em>) = <em>a</em> (1) + 8 (<em>n</em> + (<em>n</em> - 1) + … + 3 + 2) + (<em>n</em> - 1)×2

The middle group is the sum,

\displaystyle 8\sum_{k=2}^nk=8\sum_{k=1}^nk-8=\frac{8n(n+1)}2-8=4n^2+4n-8

so that

<em>a</em> (<em>n</em>) = <em>a</em> (1) + (4<em>n</em> ² + 4<em>n</em> - 8) + 2 (<em>n</em> - 1)

<em>a</em> (<em>n</em>) = 4<em>n</em> ² + 6<em>n</em> - 3

4 0
3 years ago
Enter the answer to the problem below, using the correct number of
Lena [83]

Answer:

‬80.796,64‬

Step-by-step explanation:

7 0
3 years ago
Rewrite the equation by completing the square.<br><br>x^2 −16x+63=0<br>(x +{ })^2={ }
Elina [12.6K]

Answer:

(x + 4) ^{2} + 47 = 0

Step-by-step explanation:

(x ^{2}  + 4 ^{2} ) - 4 ^{2}  + 63 = 0 \\ (x + 4) ^{2}  + 47 = 0

<em>W</em><em>h</em><em>e</em><em>n</em><em> </em><em>c</em><em>o</em><em>m</em><em>p</em><em>l</em><em>e</em><em>t</em><em>i</em><em>n</em><em>g</em><em> </em><em>squares</em><em>,</em><em> </em><em>basing</em><em> </em><em>on</em><em> </em><em>our</em><em> </em><em>equation</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>question</em><em>:</em>

  • <em>First</em><em> </em><em>square</em><em> </em><em>the</em><em> </em><em>half</em><em> </em><em>of</em><em> </em><em>1</em><em>6</em><em> </em><em>e</em><em>.</em><em>g</em><em> </em><em>(</em><em>1</em><em>6</em><em>÷</em><em>2</em><em>)</em><em>^</em><em>2</em><em> </em><em>=</em><em> </em><em>4</em><em>^</em><em>2</em>

  • <em>Add</em><em> </em><em>the</em><em> </em><em>result</em><em> </em><em>to</em><em> </em><em>x^2</em><em> </em><em>and</em><em> </em><em>subtract</em><em> </em><em>it</em><em> </em><em>with</em><em> </em><em>6</em><em>3</em><em> </em><em>e</em><em>.</em><em>g</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em>
7 0
4 years ago
Other questions:
  • In B, the percent is 35%. What is the part and what is the whole?
    7·1 answer
  • How to solve 10 = 1\3( x - 15 )
    9·1 answer
  • Name the property which justifys the following conclusions <br> 18x = 288 <br> x = 16
    5·1 answer
  • How much would $500 invested at 6% interest compounded annually be worth after 4 years
    11·2 answers
  • How many 4 digit numbers are there with the sum of the four digits equal to 34
    10·1 answer
  • A machine can weave 40 inches of fabric in 12 minutes. How long will it take for the machine to weave 100 inches of fabric?
    12·1 answer
  • Two questions please help
    5·1 answer
  • Jordan can ride his bike 24 miles in 2 hours. How many miles can he ride his bike in 5 hours?​
    13·1 answer
  • Anybody wanna c h at zoo m<br> 928-1137-7133<br> HtHq72
    6·2 answers
  • Pls answer ASAPPP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!