Explanation:
Wind turbines generate electricity by following simple principle. Moving wind transfers energy to the to the blades of the wind mill which results in spinning of the blades. These blades are connected to internal shaft which also starts spinning. This spinning of shaft generates electricity which is further distributed to electrical substations to provide electricity to homes and businesses.
Step 1: Wind moves the blades of the turbine.
Step 2: Internal shaft spins
Step 3: Generator produces electricity
Step 4: Distribution lines carry electricity to substation
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer:
A. 6N
B. 4H, 2O
C. 4H, 4N, 12O
D. 2Ca, 4O, 4H
E. 3Ba, 6Cl, 18O
F. 5Fe, 10N, 30O
G. 12Mg, 8P, 32O
H. 4N, 16H, 2S, 8O
I. 12Al, 18Se, 72O
J. 12C, 32H
I am 90% sure this is correct
Answer is: 7,826 kg of cryolite.
Chemical reaction: Al₂O₃ + 6NaOH + 12HF → 2Na₃AlF₆ + 9H₂<span>O.
m(</span>Al₂O₃) = 12,1 kg = 12100 g.
n(Al₂O₃) = m(Al₂O₃) ÷ M(Al₂O₃).
n(Al₂O₃) = 12100 g ÷ 101,96 g/mol = 111,86 mol; limiting reactant.
m(NaOH) = 60,4 kg = 60400 g.
n(NaOH) = 60400 g ÷ 40 g/mol.
n(NaOH) = 1510 mol.
m(HF) = 60,4 kg = 60400 g.
n(HF) = 60400 g ÷ 20 g/mol = 3020 mol.
From chemical reaction: n(Al₂O₃) : n(Na₃AlF₆) = 6 : 2.
n(Na₃AlF₆) = 2 ·111,86 mol ÷ 6 = 37,28 mol.
m(Na₃AlF₆) = 37,28 mol · 209,94 g/mol.
m(Na₃AlF₆) = 7826,56 g = 7,826 kg.
H2SO4 is referred to as a strong acid and is denoted as option A.
<h3>What is an Acid?</h3>
This refers to any substance which tastes sour when in water and changes the color of blue litmus paper to red. It is usually very corrosive and are used in industries for different functions.
H2SO4 is referred to as a strong acid because it dissociates completely in its aqueous solution or water.
Read more about Acid here brainly.com/question/25148363
#SPJ1