Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.
It teacts with OH and makes water and salt
Activity series of metals: K,Na,Mg,Al,Zn,Fe,Cu,Ag. Metals on the left are more reactive than metals on the right. For example Zn is more reactive than Fe and can displace him.
Reaction than can occur is: <span>CuSO4(aq) + Fe(s) → FeSO4(aq) + Cu(s).</span>
Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1
Answer:
Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH
2O.[11] The monohydrate NaOH·H
2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound.
As one of the simplest hydroxides, sodium hydroxide is frequently utilized alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students.[12]
Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tons, while demand was 51 million tons.[13]