Answer- A
Explanation- Because you have to look at the symbols and remember which symbol goes with each chemical, if you don't then you could get confused.
Answer:
2, strong acid
Explanation:
Data obtained from the question. This includes:
[H+] = 0.01 M
pH =?
pH of a solution can be obtained by using the following formula:
pH = –Log [H+]
pH = –Log 0.01
pH = 2
The pH of a solution ranging between 0 and 6 is declared to be an acid solution. The smaller the pH value, the stronger the acid.
Since the pH of the above solution is 2, it means the solution is a strong acid.
Answer:
glucose
Explanation:
Chemical energy is stored in the bonds that hold the molecule together. ADP can be recycled into ATP when more energy becomes available. The energy to make ATP comes from glucose. Cells convert glucose to ATP in a process called cellular respiration.
To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹