Answer:
14.9 g is the ideal yield of Cu(NO₃)₂
Explanation:
Reactants for the reaction: Cu and AgNO₃
Products: Copper nitrate and Ag
The balanced reaction is: Cu(s) + 2AgNO₃(aq) → 2Ag (s) + Cu(NO₃)₂
As the silver nitrate is in excess, the Cu will be the limiting reagent.
We convert the mass to moles → 5.05 g . 1 mol/ 63.55 g = 0.0794 moles
Ratio is 1:1, so 0.0794 moles will produce 0.0794 moles of Cupper(II) nitrate. We convert the moles to mass, and that value will be the theoretical yield.
0.0794 mol . 187.55 g /1 mol = of Cu(NO₃)₂
Answer:
1. Proton = electron if the element is not in an ionic state
proton = atomic number
Answer:
b melting
Explanation:
The phase change the substance is undergoing is from solid to liquid and this is called melting.
- To understand this process, we need to know the the substance changing.
- A substance that contains particles that are not easily compressed and packed is a solid.
- Solids have fixed shapes and volumes.
- Liquids can easily flow although they cannot also be easily compressed.
The phase change from solid to liquid is facilitated by a melting process.
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.