Answer:
Fe₂O₃ and C are reactants
Fe and CO₂ are products
Explanation:
Reactants:
Chemical species that are present on left side of chemical reaction equation are called reactants.
Product:
Chemical species that are present on right side of chemical reaction equation are called product.
Chemical equation:
2Fe₂O₃ + 3C → 4Fe + 3CO₂
In this reaction 2 mole of iron oxide is react with three moles of carbon and produced four moles of iron and three moles of carbon dioxide. There are equal numbers of atoms of all elements present on both side of chemical reaction so this reaction follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer:
Explanation:
It probably would have been broken down to smaller pieces and spread out around the world. Hope this help! :)
True. Nuclear fusion of hydrogen to form helium occurs naturallyin the sun and other stars. It takes place only at extremely high temperatures.
Answer:
The reason for covering the container is to make sure that the atmosphere in the beaker is saturated with solvent vapour. Saturating the atmosphere in the beaker with vapour stops the solvent from evaporating as it rises up the paper.
Answer:
<h2>4. Na+ diffusing toward the side of the membrane with Cl− and 50% less Na+.</h2>
Explanation:
Facilitated diffusion is a type of transport mechanism in which the special proteins are involved and play an important role in the transport of the atoms, ions or molecules. This mechanism is based on the electrochemical gradient differences. When this difference increase, then the transport of the sodium takes place because sodium ions are chemically attracted by chloride ions. In a facilitated diffusion process, no energy requirement takes place. This process occurs along the concentration gradient.