Answer:
please don't delete
Step-by-step explanation:
ill give points back
Answer:
y=2x-3
Step-by-step explanation:
<em>Since we know that the slope-intercept form is </em><em>y=mx+b</em><em>, we can plug in the formula with what we already know to find b!</em>
<em>In the coordinates (2,1): </em>
<em>Now, we will plug these numbers in:</em>
1=2*2+b
1=4+b
b=-3
<em>Now we can rewrite the equation since we found b:</em>
y=2x-3
Hope this helped! :)
Vertical line (when y = 0)
⇒ Equation : x = -1
Horizontal line (when x = 0)
⇒ Equation : y = -8
--------------------------------------------------------------
Answer: x = -1, y = -8
--------------------------------------------------------------
a = interest rate of first CD
b = interest rate of second CD
and again, let's say the principal invested in each is $X.
![\bf a-b=3\qquad \implies \qquad \boxed{b}=3+a~\hfill \begin{cases} \left( \frac{a}{100} \right)X=240\\\\ \left( \frac{b}{100} \right)X=360 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \left( \cfrac{a}{100} \right)X=240\implies X=\cfrac{240}{~~\frac{a}{100}~~}\implies X=\cfrac{24000}{a} \\\\\\ \left( \cfrac{b}{100} \right)X=360\implies X=\cfrac{360}{~~\frac{b}{100}~~}\implies X=\cfrac{36000}{b} \\\\[-0.35em] ~\dotfill\\\\](https://tex.z-dn.net/?f=%5Cbf%20a-b%3D3%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Cboxed%7Bb%7D%3D3%2Ba~%5Chfill%20%5Cbegin%7Bcases%7D%20%5Cleft%28%20%5Cfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5C%5C%5C%5C%20%5Cleft%28%20%5Cfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5Cimplies%20X%3D%5Ccfrac%7B240%7D%7B~~%5Cfrac%7Ba%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B24000%7D%7Ba%7D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%5Cimplies%20X%3D%5Ccfrac%7B360%7D%7B~~%5Cfrac%7Bb%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B36000%7D%7Bb%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C)


The zeroes of the polynomial functions are as follows:
- For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
- For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
- For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
<h3>What are the zeroes of a polynomial?</h3>
The zeroes of a polynomial are the vales of the variable which makes the value of the polynomial to be zero.
The polynomials are given as follows:
f(x) = 2x(x - 3)(2 - x)
f(x) = 2(x - 3)²(x + 3)(x + 1)
f(x) = x³(x + 2)(x - 1)
For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
In conclusion, the zeroes of a polynomial will make the value of the polynomial function to be zero.
Learn more about polynomials at: brainly.com/question/2833285
#SPJ1