Angles 1, 2, and 3 are all 90°.
10x = 90
.. x = 9
x +y = 90
.. y = 81
5z = 90
.. z = 18
The values of (x, y, z) are (9, 81, 18).
Answer:
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Step-by-step explanation:
1 Use Square of Sum: {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}(a+b)
2
=a
2
+2ab+b
2
.
({x}^{2}+2xy+{y}^{2})({x}^{2}+2xy+{y}^{2})(x
2
+2xy+y
2
)(x
2
+2xy+y
2
)
2 Expand by distributing sum groups.
{x}^{2}({x}^{2}+2xy+{y}^{2})+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
2
(x
2
+2xy+y
2
)+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
3 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
4 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
(x
2
+2xy+y
2
)
5 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}{x}^{2}+2{y}^{3}x+{y}^{4}x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
x
2
+2y
3
x+y
4
6 Collect like terms.
{x}^{4}+(2{x}^{3}y+2{x}^{3}y)+({x}^{2}{y}^{2}+4{x}^{2}{y}^{2}+{x}^{2}{y}^{2})+(2x{y}^{3}+2x{y}^{3})+{y}^{4}x
4
+(2x
3
y+2x
3
y)+(x
2
y
2
+4x
2
y
2
+x
2
y
2
)+(2xy
3
+2xy
3
)+y
4
7 Simplify.
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Answer:
98
Step-by-step explanation:
You could put,
19
+ 6
———
25
Then write,
19+6=25
4) The first and second terms for both ratios need to be in the same order.
Step-by-step explanation:
Given ratio is:
16:36
In order to find any ratio equivalent to given ratio, the ratio can be divided by a number or multiplied to a number.
The equivalent ratio that is given: 72:32
If we multiply the given ratio by 2: We get 32:72
So,
Looking at the options we can conclude that the right answer is
4) The first and second terms for both ratios need to be in the same order.
Keywords: Ratio, Fractions
Learn more about ratios at:
#LearnwithBrainly