Answer:
- 273 mL of 5%
- 117 mL of 15%
Step-by-step explanation:
Let q represent the quantity of 15% dressing used. Then the amount of 5% dressing is (390 -q). The amount of vinegar in the mix is ...
0.15q + 0.05(390 -q) = 0.08(390)
0.10q = 31.2 -19.5 = 11.7 . . . . . . subtract 0.05(390) and simplify
q = 117 . . . . . . . . . . . . . . . . . . multiply by 10
390-q = 273
The chef should use 273 mL of the first brand (5% vinegar) and 117 mL of the second brand (15% vinegar).
__
<em>Additional comment</em>
You may have noticed that the value of q is (0.08 -0.05)/(0.10 -0.05)×390. The fraction of the mix that is the highest contributor is the ratio of the difference between the mix value and least contributor, divided by the difference between the contributors: (8-5)/(15-5) = 3/10, the fraction that is 15% vinegar. This is the generic solution to mixture problems.


Using hit and trial, you van find it pretty easily-
- Putting x=0, we get y=-3
- Putting x=1, we get y=-1
- Putting x=2, we get y=5
You can try it for yourself as well, for me, I couldn't find any other option appropriate.
Answer:
choice 1
Step-by-step explanation:
Given
V = πr²h ( isolate r² by dividing both sides by πh )
= r² ( take the square root of both sides )
= r ← the positive value of r
B because the multiplication has different signs
Answer:
[2] x = -5y - 4
// Plug this in for variable x in equation [1]
[1] 2•(-5y-4) - 5y = 22
[1] - 15y = 30
// Solve equation [1] for the variable y
[1] 15y = - 30
[1] y = - 2
// By now we know this much :
x = -5y-4
y = -2
// Use the y value to solve for x
x = -5(-2)-4 = 6
Solution :
{x,y} = {6,-2}
Processing ends successfully
Subscribe to our mailing list
Email Address
Terms and Topics
Linear Equations with Two Unknowns
Solving Linear Equations by Substitution
Related Links
Algebra - Linear Systems with Two Variables
Step-by-step explanation: