Answer:
Explanation:
The impulse equation is
Δp = FΔt, where Δp = final momentum - initial momentum, F is the Force exerted on an object, and Δt is the change in time. In this equation,the entire right side defines the impulse. In other words, FΔt is the impulse; thus the change in momentum an object experiences is due to its change in impulse and is directly proportional to it.
Therefore, once we find the change in momentum, that is the impulse the object experiences. Δp = final momentum - initial momentum, where
p = mv and p is momentum.
so
and
so
; therefore,
Δp = 25.0 - 17.5 = 7.5
which is the unit for momentum
11.54 minutes
Explanation:
The decay rate equation is given by

where
is the half-life. We can rewrite this as

Taking the natural logarithm of both sides, we get

Solving for
,



As the question is about changing in frequency of a wave for an observer who is moving relative to the wave source, the concept that should come to our minds is "
Doppler's effect."
Now the general formula of the Doppler's effect is:

-- (A)
Note: We do not need to worry about the signs, as everything is moving towards each other. If something/somebody were moving away, we would have the negative sign. However, in this problem it is not the issue.
Where,
g = Speed of sound = 340m/s.

= Velocity of the receiver/observer relative to the medium = ?.

= Velocity of the source with respect to medium = 0 m/s.

= Frequency emitted from source = 400 Hz.

= Observed frequency = 408Hz.
Plug-in the above values in the equation (A), you would get:


Solving above would give you,

= 6.8 m/s
The correct answer = 6.8m/s
Answer:
So the answer is .7 (whatever unit)
Explanation:
The distance can be determined by using the formula:
D = W/F (Distance = Work divided by Force.
The Work is 45 J. The Force is 65 N (newtons).
So, it would be 45/65.
.70 or .7