Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 = / T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
<span>C. Mao Zedong
Hope this helps!~</span>
Well, if i am correct. a substance is:
a particular kind of matter with uniform properties
or...
the real physical matter of which a person or thing consists and which has a tangible, solid presence.
choose which ever you like better:)
The average speed is 42.7 m/s
Explanation:
The speed of an object in uniform motion (=moving at constant speed) is given by the equation:
where
v is the speed
d is the distance
t is the time
For the car in this problem, we have:
d = 2560 m (distance)
t = 60 s (time)
Solving the equation, we find the average speed:
Learn more about speed:
brainly.com/question/8893949
#LearnwithBrainly
From the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
<h3>What is a pendulum?</h3>
A pendulum swings back and forth and can be used to show the change of potential energy to kinetic energy and vice versa.
Given that the kinetic energy is converted to the potential energy; the potential energy at 0.5 m is 3 * 9.8 * 0.5 = 14.7 J.
Following the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
Learn more about pendulum:brainly.com/question/14759840
#SPJ1