Answer:
Nice. What is the question?
Step-by-step explanation:
<em>So</em><em>,</em>
<em>m</em><em><</em><em>1</em><em>=</em><em>4</em><em>5</em><em>,</em><em> </em><em>m</em><em><</em><em>2</em><em>=</em><em>1</em><em>3</em><em>5</em>
<em>So</em><em> </em><em>t</em><em>he</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>D</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
distance between two points is [(x2-x1)^2 +(y2-y1)^2]^1/2
I.e,[{5-1)^2+(0-3)^2]^1/2
[16+9]^1/2
[25]^1/2
5
Assuming the area below the line y=0 (i.e. x>1) does NOT count, the area to be rotated is shown in the graph attached.
A. Again, using Pappus's theorem,
Area, A = (2/3)*1*(1-(-1))=4/3 (2/3 of the enclosing rectangle, or you can integrate)
Distance of centroid from axis of rotation, R = (2-0) = 2
Volume = 2 π RA = 2 π 2 * 4/3 = 16 π / 3 (approximately = 16.76 units)
B. By integration, using the washer method
Volume =


![=2\pi[x^4/4-2x^3/3-x^2/2+2x]_{-1}^{1}](https://tex.z-dn.net/?f=%3D2%5Cpi%5Bx%5E4%2F4-2x%5E3%2F3-x%5E2%2F2%2B2x%5D_%7B-1%7D%5E%7B1%7D)
![=2\pi([1/4-2/3-1/2+2]-[1/4+2/3-1/2-2])](https://tex.z-dn.net/?f=%3D2%5Cpi%28%5B1%2F4-2%2F3-1%2F2%2B2%5D-%5B1%2F4%2B2%2F3-1%2F2-2%5D%29)

= 16 π /3 as before
Answer:
The answer is A
Step-by-step explanation:
Down 2 right 3. You can figure this out for other problems like this by choosing any point on the graph and following the slope. It's down because the 2 is negative and 3 is positive to it goes to the right.