Answer:
4.99 mg of vitamin C are in the beaker.
Explanation:
Given that,
Weight of vitamin = 0.0499 g
Molar mass = 176.124 g/mol
Weight of water = 100.0 ml
We need to calculate the mg of vitamin C in the beaker
We dissolve 0.0499 g vitamin C in water to from 100.0 ml solution.
100 ml solution contain 49.9 mg vitamin C
Now, we take 10 ml of this vitamin C solution in breaker
Since, 100 ml solution =49.9 mg vitamin C
Therefore,
![10\ ml\ solution =\dfrac{10\times49.9}{100}](https://tex.z-dn.net/?f=10%5C%20ml%5C%20solution%20%3D%5Cdfrac%7B10%5Ctimes49.9%7D%7B100%7D)
![10\ ml\ solution =4.99\ mg](https://tex.z-dn.net/?f=10%5C%20ml%5C%20solution%20%3D4.99%5C%20mg)
Hence, 4.99 mg of vitamin C are in the beaker.
Answer:
Option A is correct.
Eddies due to enhanced mixing of fluid
Explanation:
Turbulent thermal conductivity is thermal conductivity that arises from the turbulent flow of fluids. It comes into play when a particukar fluid moves into turbulent regiom of flow where flow is no longer orderly and streamlines aren't discernable with the fluid layers all warping into one another forming vortices.
It is represented as K and is shown mathematically through the heat flux at turbulent flow
q = vCρT' = - K (∂T/∂y)
where
K = turbulent thermal conductivity
T' = the eddy temperature relative to the mean value,
C = Heat capacity the fluid
q = the rate of thermal energy transport by turbulent eddies.
The physical mechanism that cause turbulent thermal conductivity are similar to the causes of turbulent flow of fluids.
This includes sharp changes in fluid pressure and velocity of flow which is evident in eddies that come about in the enhanced mixing of fluids.
Hope this Helps!!!
expressing adverse or disapproving comments or judgments.
Answer:
Natae Si Jordan Kaya Sya Napaihe
Explanation:
haha
The potential energy is stored in the chemical bonds of the food. When those bonds break up during the metabolic processes, the energy is released. After that, that energy is stored in the Adenosine Triphosphate bonds aka ATP. The simplest way to think is to think of food as the tightly bound atoms. When the chemical bonds between those atoms break, the stored energy in that food is released.