The victim's head is accelerated faster and harder than the
torso when the victom is involved in a typical rear-end collision.
The traffic accident where a vehicle crashes into another
vehicle that is directly in front of it is called a rear-end collision.
One of the most common accident in the United States is the
rear-end collision, and in a lot of cases, rear-end collisions are prompted by
drivers who are inattentive, unfavorable conditions of the road, and poor
following distance.
<span>An enough room in front of your car so you can stop when the
car in front of you stops suddenly is one basic driving rule. The person isn’t
driving safely if he / she is behind you and couldn’t stop.</span>
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²
So, <u>the value of the work is approximately 84.65 J</u>.
<h2>Introduction</h2>
Hi ! Here I will help you to discuss the subject about work that caused by force in amount value of angle. Work is affected by the force and displacement.
- If related to the magnitude of the force, the amount of work will be proportional to the magnitude of the applied force. Thats mean, if the value of the force that applied on it is greater, then the value of the work will be greater.
- If related to the magnitude of shift, the amount of work will be proportional to the magnitude of shift of object. Thats mean, if the value of the shift on it is greater, then the value of the work will be greater.
<h3>Formula Used</h3>
The work done by a moving object can be expressed in the equation:
If the Angle Is Ignored

If the Angle Effect on Work

With the following condition:
- W = work that done by object (J)
- F = force that applied (N)
- s = shift or distance (m)
= angle of elevation (°)
<h3>Solution</h3>
We know that :
- F = force that applied =
N - s = shift or distance = 84.9 m
= angle of elevation = 45°
What was asked ?
- W = work that done by object = ... J
Step by step :






<h3>Conclusion</h3>
So, the value of the work is approximately 84.65 J.
Answer:
θ=142.9°
Explanation:
d=1 *r
angle ϕ= 37.1°
the line connecting pebble and target should be tangent to a circle so
cos(180-ϕ-θ)=
=
∴ θ=180-ϕ-
θ= 180-37.1-0
θ=142.9°