1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
10

A particle with mass 1.09 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.985

m and a duration of 127 s for 76 cycles of oscillation.
Find the frequency, f, the speed at the equilibrium position, vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 38.1% of the amplitude away from the equiliibrium position, U, and the kinetic energy, K, and the speed, v, at the same position.
Physics
1 answer:
e-lub [12.9K]3 years ago
4 0

Answer:

a) f = 0.598\,hz, b) v_{max} = 3.701\,\frac{m}{s}, c) k = 15.385\,\frac{N}{m}, d) U = 1.081\,J, e) K = 6.382\,J, f) v\approx 3.422\,\frac{m}{s}

Explanation:

a) The frequency of oscillation is:

f = \frac{76}{127\,hz}

f = 0.598\,hz

b) The angular frequency is:

\omega = 2\pi \cdot f

\omega = 2\pi \cdot (0.598\,hz)

\omega = 3.757\,\frac{rad}{s}

Lastly, the speed at the equilibrium position is:

v_{max} = \omega \cdot A

v_{max} = (3.757\,\frac{rad}{s} )\cdot (0.985\,m)

v_{max} = 3.701\,\frac{m}{s}

c) The spring constant is:

\omega = \sqrt{\frac{k}{m}}

k = \omega^{2}\cdot m

k = (3.757\,\frac{rad}{s} )^{2}\cdot (1.09\,kg)

k = 15.385\,\frac{N}{m}

d) The potential energy when the particle is located 38.1 % of the amplitude away from the equilibrium position is:

U = \frac{1}{2}\cdot (15.385\,\frac{N}{m} )\cdot (0.375\,m)^{2}

U = 1.081\,J

e) The maximum potential energy is:

U_{max} = \frac{1}{2}\cdot (15.385\,\frac{N}{m} )\cdot (0.985\,m)^{2}

U_{max} = 7.463\,J

The kinetic energy when the particle is located 38.1 % of the amplitude away from the equilibrium position is:

K = U_{max} - U

K = 7.463\,J - 1.081\,J

K = 6.382\,J

f) The speed when the particle is located 38.1 % of the amplitude away from the equilibrium position is:

K = \frac{1}{2}\cdot m \cdot v^{2}

v = \sqrt{\frac{2\cdot K}{m} }

v = \sqrt{\frac{2\cdot (6.382\,J)}{1.09\,kg} }

v\approx 3.422\,\frac{m}{s}

You might be interested in
How do I make a Bohr model of the boron atom?
4vir4ik [10]
This should help

there always needs to be the two electrons first if possible the 8 electrons for each shell till the number of electron runout

3 0
3 years ago
Name each type of symbiosis and explain how the two species are affected
disa [49]
Frogs
snakes if there food chain is mesesed up it dont work no more

7 0
3 years ago
Which diagram best represents the electric field around a negatively charged conducting sphere? (See pic)
dalvyx [7]
The answer is D !!!!!!!
3 0
3 years ago
The critical angle for water is 49°. If a ray of light
Sonja [21]

Answer:

Snell's Law states

Ni sin i = Nr sin r

Judging from the question the source of the ray is in the water (directed up)

or NI = 1 / sin 49      Ni = 1.325 deg     the critical angle

From inside the pond:

Nr = 1.325 * sin 45 / 1 = 94 deg  

So refraction can occur  outside the pond and you do not have total internal refection.

 

3 0
3 years ago
The first stage in the GAS model of stress is
Vladimir [108]
<span>The first stage in the Gas model of stress is alarm and mobilization. So the correct option in regards to the given question is option “d”. Hans Selye is the person that evolved this model and he has explained this model in complete details.  He has broken down his model into three stages. The first stage involves alarm and mobilization. The second stage includes resistance. The third and the final stage include the exhaustion stage. These are the stages that an organism goes through to restore back the balance when stress is exerted from outside. </span>


8 0
3 years ago
Other questions:
  • If you push a 100-kilogram box on Earth, then take it to the Moon and try to push it there, it would feel like you were pushing
    7·2 answers
  • PLEASE NEED HELP What is the net force acting on the race car in the picture: Question 1 options: 10 N to the right 3 N to the l
    13·1 answer
  • A man claims that he can hold onto a 13.0-kg child in a head-on collision as long as he has his seat belt on. Consider this man
    9·1 answer
  • What is the difference between velocity and speed??
    5·2 answers
  • How much force is needed to accelerate a 1,800kg car at rate of 1.5 m/s2?
    13·1 answer
  • HELP ME PLZ!!!! I'LL DO ABSOLUTELY ANYTHING, AND I MEAN ANYTHING!!!!!!
    10·2 answers
  • 5. The entrance of a science museum features a funnel into which marbles are rolled one at a time. The marbles circle around the
    12·1 answer
  • 3. A cart (m= 10.0 kg) is currently traveling with a velocity of 3.0 m/s. The cart then gains speed,
    6·1 answer
  • 32. Increasing the amplitude of a sound wave produces a
    12·1 answer
  • If the volume of the cylinder is to be calculated, what would be the total standard deviation of the volume?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!