Answer:
a) Percentage of students scored below 300 is 1.79%.
b) Score puts someone in the 90th percentile is 638.
Step-by-step explanation:
Given : Suppose a student's score on a standardize test to be a continuous random variable whose distribution follows the Normal curve.
(a) If the average test score is 510 with a standard deviation of 100 points.
To find : What percentage of students scored below 300 ?
Solution :
Mean
,
Standard deviation 
Sample mean 
Percentage of students scored below 300 is given by,






Percentage of students scored below 300 is 1.79%.
(b) What score puts someone in the 90th percentile?
90th percentile is such that,

Now, 






Score puts someone in the 90th percentile is 638.
Answer:
B) 7.5 in3
Step-by-step explanation:
Answer:
k= 1316/117
Step-by-step explanation:
Solution:
As region bounded by y-axis, the line y=6, and the line y=1/2 is a line segment of definite length on y-axis.
We consider a line , one dimensional if it's thickness is negligible.
So, Line is two dimensional if it's thickness is not negligible becomes a quadrilateral.
So, Area (region bounded by y-axis, the line y=6, and the line y=1/2 is a line segment of definite length on y-axis)= Area of line segment between [,y=6 and y=1/2.]= 6-1/2=11/2 units if we consider thickness of line as negligible.
Answer:
45 is the father's age
Step-by-step explanation: