1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
3 years ago
7

What exponent will make this true? Enter your naswer in the box 10?=1,000​

Mathematics
1 answer:
MrRa [10]3 years ago
8 0

Answer:

10 to the 2nd power

Step-by-step explanation:

You might be interested in
What is 20% of $10
Mama L [17]
10 * 0.20 = 2
20% of 10 is 2
4 0
3 years ago
Evaluate the following definite integral​
mihalych1998 [28]

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
A researcher wishes to estimate the percentage of adults who support abolishing the penny. What size sample should be obtained i
alex41 [277]

Answer:

sample size if he uses a previous estimate of 32​% is 523

sample size if he does not use any prior​ estimates is 601

Step-by-step explanation:

estimate E = 4 percentage = 0.04

confidence Cl = 95% = 0.95

previous estimate p = 32% = 0.32

q = 1 - 0.32 = 0.68

to find out

size of sample

solution

first we calculate z value for 95% confidence E = 0.04 is 1.96

from probability P(-1.96 < z < 1.96) = 0.95)

here z = 1.96

so in 1st part size of sample we know

E = z × \sqrt{pq/n}

put all value E, z p and q and we get n

n = (z/E)² ×p×q

n = (1.96/0.04)² ×0.32×0.68

n = 523

sample size if he uses a previous estimate of 32​% is 523

now in 2nd part we take p = 0.5

so n will be

n = (z/E)² ×p×q

n = (1.96/0.04)² ×0.5×0.5

n = 601

sample size if he does not use any prior​ estimates is 601

6 0
3 years ago
What is the true solution to 3In2+In(4x)
stepladder [879]

Answer:

x=2

Step-by-step explanation:

7 0
3 years ago
Find the value of x and y.
suter [353]

Answer:

5,6

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Which of the or the following ordered pairs is a solution of x+1/2 y=1?
    7·2 answers
  • Earl needs to fill juice cups for his little brother's birthday party. There are 25 juice cups and each juice cup holds 12 fluid
    10·1 answer
  • Find the number of real number solutions for the equation.x2 − 2x + 9 = 0
    9·1 answer
  • Most road and racing bicycles today use 622 mm diameter rims.  Write and expression which would solve for the circumference of t
    15·1 answer
  • Two fifths of one less than a number is less than three fifths
    6·1 answer
  • if the results of the survey were claimed to indicate that 7.7% of adults in the country who own digital cameras plan to replace
    10·1 answer
  • marcus has a spinner with 3 red sections,2 blue sections,1 purple section.match the event of landing on each color to the correc
    6·1 answer
  • A 3rd3^{\text{rd}}3rd3, start superscript, start text, r, d, end text, end superscript degree binomial with a constant term of 8
    15·1 answer
  • Find the volume of the cone. Round your answer to the nearest hundredth.
    9·1 answer
  • The cost of a jacket increased from $55.00 to $62.15. What is the percentage increase of the cost of the jacket?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!