10 * 0.20 = 2
20% of 10 is 2
Answer:

General Formulas and Concepts:
<u>Symbols</u>
- e (Euler's number) ≈ 2.71828
<u>Algebra I</u>
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Integration by Parts: 
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Exponential Rule - Multiplying]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-solve.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- [<em>u</em>] Rewrite:
![\displaystyle x = \sqrt[3]{u}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%20%5Csqrt%5B3%5D%7Bu%7D)
- [<em>du</em>] Rewrite:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] U-Solve:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20e%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7B3x%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Simplify:

- [Integrand] U-Solve:

<u>Step 5: integrate Pt. 4</u>
<em>Identify variables for integration by parts using LIPET.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- Set <em>dv</em>:

- [<em>dv</em>] Exponential Integration:

<u>Step 6: Integrate Pt. 5</u>
- [Integral] Integration by Parts:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20%5Cint%5Climits%5E1_0%20%7Be%5Eu%7D%20%5C%2C%20du%20%5Cbigg%5D)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20e%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20%5Cbigg%5D)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5B%20e%20-%20e%20%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Answer:
sample size if he uses a previous estimate of 32% is 523
sample size if he does not use any prior estimates is 601
Step-by-step explanation:
estimate E = 4 percentage = 0.04
confidence Cl = 95% = 0.95
previous estimate p = 32% = 0.32
q = 1 - 0.32 = 0.68
to find out
size of sample
solution
first we calculate z value for 95% confidence E = 0.04 is 1.96
from probability P(-1.96 < z < 1.96) = 0.95)
here z = 1.96
so in 1st part size of sample we know
E = z × 
put all value E, z p and q and we get n
n = (z/E)² ×p×q
n = (1.96/0.04)² ×0.32×0.68
n = 523
sample size if he uses a previous estimate of 32% is 523
now in 2nd part we take p = 0.5
so n will be
n = (z/E)² ×p×q
n = (1.96/0.04)² ×0.5×0.5
n = 601
sample size if he does not use any prior estimates is 601
Answer:
x=2
Step-by-step explanation:
Answer:
5,6
Step-by-step explanation: