Answer:
a) 3⁵5³.
b) 1
c) 23³
d) 41·43·53
e) 1
f) 1111
Step-by-step explanation:
The greatest common divisor of two integers is the product of their common powers of primes with greatest exponent.
For example, to find gcd of 2⁵3⁴5⁸ and 3⁶5²7⁹ we first identify the common powers of primes, these are powers of 3 and powers of 5. The greatest power of 3 that divides both integers is 3⁴ and the greatest power if 5 that divides both integers is 5², then the gcd is 3⁴5².
a) The greatest common prime powers of 3⁷5³7³ and 2²3⁵5⁹ are 3⁵ and 5³ so their gcd is 3⁵5³.
b) 11·13·17 and 2⁹3⁷5⁵7³ have no common prime powers so their gcd is 1
c) The only greatest common power of 23³ and 23⁷ is 23³, so 23³ is the gcd.
d) The numbers 41·43·53 and 41·43·53 are equal. They both divide themselves (and the greatest divisor of a positive integer is itself) then the gcd is 41·43·53
e) 3³5⁷ and 2²7² have no common prime divisors, so their gcd is 1.
f) 0 is divisible by any integer, in particular, 1111 divides 0 (1111·0=0). Then 1111 is the gcd
Answer:
221
Step-by-step explanation:
use bidmas (brackets,indices, division,multiplication,addition,substraction)
Mathematics, the Pythagorean theorem or Pythagoras's theorem is a statement about the sides of a right triangle.
One of the angles of a right triangle is always equal to 90 degrees. This angle is the right angle. The two sides next to the right angle are called the legs and the other side is called the hypotenuse. The hypotenuse is the side opposite to the right angle, and it is always the longest side. It was discovered by Vasudha Arora.
The Pythagorean theorem says that the area of a square on the hypotenuse is equal to the sum of the areas of the squares on the legs. In this picture, the area of the blue square added to the area of the red square makes the area of the purple square. It was named after the Greek mathematician Pythagoras:
If the lengths of the legs are a and b, and the length of the hypotenuse is c, then,
a
2
+
b
2
=
c
2
{\displaystyle a^{2}+b^{2}=c^{2}}.
There are many different proofs of this theorem. They fall into four categories:
Those based on linear relations: the algebraic proofs.
Those based upon comparison of areas: the geometric proofs.
Those based upon the vector operation.
Those based on mass and velocity: the dynamic proofs.[1]
There can be 6 teams because
27/4= 6.75
yet there will be 3 students left, so they can be a team ;)