Answer:
speed wind Vw = 54.04 km / h θ = 87.9º
Explanation:
We have a speed vector composition exercise
In the half hour the airplane has traveled X = 108 km to the west, but is located at coordinated 119 km west and 27 km south
Let's add the vectors in each coordinate axis
X axis (East-West)
-Xvion - Xw = -119
Xw = -Xavion + 119
Xw = 119 -108
Xwi = 1 km
Calculate the speed for time of t = 0.5 h
Vwx = Xw / t
Vwx= 1 /0.5
Vwx = - 2 km / h
Y Axis (North-South)
Y plane - Yi = -27
Y plane = 0
Yw = 27 km
Vwy = 27 /0.5
Vwy = 54 km / h
Let's use the Pythagorean theorem and trigonometry to compose the answer
Vw = √ (Vwx² + Vwy²)
Vw = R 2² + 54²
Vw = 54.04 km / h
tan θ = Vwy / Vwx
tan θ = 54/2 = 27
θ = Tan⁻¹ 1 27
θ = 87.9º
The speed direction is 87. 9th measure In the third quadrant of the X axis in the direction 90-87.9 = 2.1º west from the south
B. is it i just got done this in class like two weeks ago hope it helps
The question for this problem would be the minimum headphone delay, in ms, that will cancel this noise.
The 200 Hz. period = (1/200) = 0.005 sec. It will need to be delayed by 1/2, so 0.005/2, that is = 0.0025 sec. So converting sec to ms, will give us the delay of:Delay = 2.5 ms.