Answer:
12.01
Explanation:
(12.00*98.93% + 13*1.07%) /100% = 12.01
1) Use the fact that 1 mol of gas at STP occupies 22.4 liter
=> 1 mol / 22.4 l = x / 0.125 l => x = 0.125 l * 1 mol / 22.4 l = 0.00558 mol
2) Now use the molar mass of the gas
molar mass of CO2 ≈ 44 g / mol
Formula: molar mass = mass in grams / number of moles =>
mass in grams = molar mass * number of moles = 44 g/mol * 0.00558 moles
mass = 0.246 g
Answer: 0.246 g
Answer:
The answer is Near The Ocean Ridges.
An anchoring phenomenon anchors all of the learning within a unit. So, it is a unit level event that the classroom is trying to make sense of as they engage in a series of lessons.
Since the questions the students ask about the anchor drive the learning within the unit, the anchor should be complex and require an understanding of several big science ideas to explain.
At strategic moments, the class revisits the anchoring phenomenon to review their initial questions to see which they have answered, which they are making progress on, and what new questions they may have to help us continue learning about the phenomenon.
Throughout the unit, the classroom and each student should be given opportunities to share their thinking and how it relates to the anchoring phenomenon.
YOU SHOULD PUT IT IN YOUR OWN WORDS THOUGH <3
a. 30 moles of H₂O
b. 2.33 moles of N₂
<h3>Further explanation</h3>
Given
a. 20 moles of NH₃
b. 3.5 moles of O₂
Required
a. moles of H₂O
b. moles of N₂
Solution
Reaction
4NH₃+3O₂⇒2N₂+6H₂O
a. From the equation, mol ratio NH₃ : H₂O = 4 : 6, so mol H₂O :
=6/4 x mol NH₃
= 6/4 x 20 moles
= 30 moles
b. From the equation, mol ratio N₂ : O₂ = 2 : 3, so mol N₂ :
=2/3 x mol O₂
= 2/3 x 3.5 moles
= 2.33 moles