Yes that is definitely true
Answer:
number of moles of water (n) = 1.383 x10 ⁻⁵ mol
Explanation:
Data Given:
No. of molecules of water = 8.33×10¹⁸
No. of Mole of water = ?
Formula Used to calculate
no. of moles = numbers of particles (ions, molecules, atoms) /Avogadro's number
Avogadro's no. = 6.023 x10²³
So the formula could be written as
no. of moles (n) = no. of molecules of water /6.023 x10²³
Put the values in above formula
no. of moles (n) = 8.33×10¹⁸ /6.023 x10²³
no. of moles (n) = 8.33×10¹⁸ /6.023 x10²³
no. of moles (n) = 1.383 x10 ⁻⁵
so 1.383 x10 ⁻⁵ moles of water are represented by 8.33×10¹⁸ molecules of water.
The empirical formula of this compound is equal to
.
<h3>
Empirical formula</h3>
To calculate the empirical formula of a compound, it is necessary to know the number of moles present.
Therefore, we will use the molar mass of iron and oxygen to find the amount of moles, so that:






Finally, as the empirical formula is composed of integers numbers of moles, just multiply the values by the smallest common factor to transform into an integer, so that:
O => 
Fe => 
So, the empirical formula of this compound is equal to 
Learn more about empirical formula in: brainly.com/question/1363167
Answer: Cotton
Explanation: Some cement is natural but i don't think that's what question is referring to. C: polyester is made from synthetic fibers. D: nylon is man made.
Also, cotton grows on plants.
Answer is: freezing point is -0,226°C.
Answer is: the molal concentration of glucose in this solution is 1,478 m.
m(KCl) = 15 g.
n(KCl) = m(KCl) ÷ M(KCl).
n(KCl) = 15 g ÷ 74,55 g/mol.
n(KCl) = 0,2 mol
m(H₂O) = 1650 g ÷ 1000 g/kg = 1,65 kg.
b = n(KCl) ÷ m(H₂O).
b = 0,2 mol ÷ 1,65 kg = 0,122 m.
Kf(water) = 1,86°C/m.
ΔT = Kf(water) · b(solution).
ΔT = 1,86°C/m · 0,122 m.
ΔT = 0,226°C.