The overall reaction is:
Br₂(g) + 2 NO(g) ↔ 2 NOBr(g)
rate law = k [Br₂][NO]²
The first step of the overall reaction is:
NO(g) + Br₂(g) K₁⇄⇄K-1 NOBr₂(g)
rate law 1 = k₁ [Br₂][NO] or
rate law 2 = k-1 [NOBr₂]
The second step of the overall reaction is:
NOBr₂(g) + NO(g) →K₂→ 2 NOBr
rate law 3 = k₂[NOBr₂][NO]
So, rate law of overall reaction can be obtained as follows:
(rate law 1)*(rate law 3) / (rate law 2)
= [(k₁[Br₂][NO])* (K₂[NOBr₂][NO])] / k₋₁[NOBr₂]
= [k₁k₂/k₋₁][NO]²[Br₂]
So the correct answer is:
[k₁k₂/k₋₁][NO]² [Br₂]
False. For example, changing climates will mean that some areas that experience harsh weather will soon being to experience milder weather. :)
Answer:
χH₂ = 0.4946
χN₂ = 0.4130
χAr = 0.0923
Explanation:
The total pressure of the mixture (P) is:
P = pH₂ + pN₂ + pAr
P = 443.0 Torr + 369.9 Torr + 82.7 Torr
P = 895.6 Torr
We can find the mole fraction of each gas (χ) using the following expression.
χi = pi / P
χH₂ = pH₂ / P = 443.0 Torr/895.6 Torr = 0.4946
χN₂ = pN₂ / P = 369.9 Torr/895.6 Torr = 0.4130
χAr = pAr / P = 82.7 Torr/895.6 Torr = 0.0923
D. Electrons
Atoms can share their electrons in order to create bonds with other atoms