To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So


Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,



Therefore the tension force in the cable is 10290.15N
The standard unit is KW/hr, = 1,000W/hr.
(85 + 60) = 145W.
You need to find its fraction of 1,000W., so (145/1000) = 0.145 KWH.
(0.145 x 10p) = 1.45p. per hr.
Answer:
- Its entropy increases.
Explanation:
Entropy is defined as a 'measure of the amount of energy in a physical system that cannot be used to do work.' It is also employed to denote randomness, disorder, or uncertainty of the arrangement/system. In the given system, the melting of ice denotes the 'increase in entropy' as the amount of energy unavailable to do work increases('absorbs 3.33 x 10³J of energy'). Thus, <u>this signifies that the entropy increases with a rise in temperature as it allows the substance to have greater kinetic energy</u>.
Answer:
Newtons law
Explanation:
According to this law, a body at rest tends to stay at rest, and a body in motion tends to stay in motion, unless acted on by a net external force.