Consider 20 deg.C. as room temperature.
From tables,
Silver has a resistivity of 1.6*10^-8 ohm-m at 20 deg.C, and it increases by 0.0038 ohm-m per deg.K increase.
Therefore if the temperature rise above 20 deg.C is T, then silver will have resistivity of
1.6*10^-8(1 + 0.0038T) ohm-m
At room temperature, the resistivity of tungsten (from tables) is 5.6*10^-8.
The resistivity of silver will be 4 times that of tungsten (at room temperature) when
1.6*10^-8(1 + 0.0038T) = 4*5.6*10^-8
1 + 0.0038T = 14
T = 13/.0038 = 3421 deg.K approx
Answer: 20 + 3421 = 3441 °C
When air resistance<span> acts, acceleration during a fall </span>will<span> be less than g because </span>air resistance affects<span> the motion of the falling </span>objects<span> by slowing it down. </span>Air resistance<span> depends on two important factors - the</span>speed<span> of the </span>object<span> and its surface area. Increasing the surface area of an </span>object<span> decreases its </span>speed<span>.</span>
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:
The only difference between a planet and a dwarf planet is the area surrounding each celestial body. A dwarf planet has not cleared the area around its orbit, while a planet has.
Explanation:
the three criteria of the IAU for a full-sized planet are: It is in orbit around the Sun. It has sufficient mass to assume hydrostatic equilibrium (a nearly round shape). It has "cleared the neighborhood" around its orbit .
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)