Answer:
13
Explanation:
13.0120481928 it is the distance
See if you get the answer with this formulae.
<h2>
Answer:</h2>
If a car is rounding a flat curve, it experiences a centripetal force that pulls it towards the center of the circle it is rotating in.
Now,
The centripetal force can be balanced by the centrifugal force caused due to the acceleration of the body at the high speed which counters the centripetal force and in turn <u>prevents the car from slipping down the curve.</u>
So,
If the car doesn't hit the gas then the <em><u>car will fall down from the curve</u></em> as the Centripetal force will exceed the Centrifugal force of the car.
However, if the car doesn't hit the brake then the <em><u>car will maintain it's position on the flat curve</u></em> track as the centrifugal force will counter the effect of centripetal force directed towards the center.
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:


Actual distance between the start and the end point (displacement):

Now, to calculate how much farter did the traveler walk, we need to use the following equation:

Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!