Answer:
since there is no displacement, d = 0
Explanation:
hence work = f×d
= 150×0
= 0J
Answer:
21,000 N
Explanation:
You would use the formula F=ma
So you would do substitution...
F=700 kg(30 m/s/s)
F=21,000 N
Answer:
a) 12.8 N
b) 3.2 m/s²
Explanation:
I'm guessing the period is 0.5π s.
Period of a spring in simple harmonic motion is:
T = 2π √(m/k)
Given T = 0.5π and m = 2 kg:
0.5π = 2π √(2/k)
0.25 = √(2/k)
0.0625 = 2/k
k = 32
The spring constant is 32 N/m, and the maximum displacement is 0.4 m. The maximum force can be found with Hooke's law:
F = kx
F = (32 N/m) (0.4 m)
F = 12.8 N
The acceleration can be found with Newton's second law:
∑F = ma
kx = ma
(32 N/m) (0.2 m) = (2 kg) a
a = 3.2 m/s²
It is often revealed <span>at the resolution of the story, when the reader can see how the story ends.</span>
Answer:
The height of the hill is, h = 38.42 m
Explanation:
Given,
The horizontal velocity of the soccer ball, Vx = 15 m/s
The range of the soccer ball, s = 42 m
The projectile projected from a height is given by the formula
S = Vx [Vy + √(Vy² + 2gh)] / g
Therefore,
h = S²g/2Vx² (Since Vy = 0)
Substituting the values
h = 42² x 9.8/ (2 x 15²)
= 38.42 m
Hence, the height of the hill is, h = 38.42 m