The simplified form of 3 over 2x plus 5 + 21 over 8 x squared plus 26x plus 15 is <span>6 over the quantity 4 x plus 3.
</span>
The solution would
be like this for this specific problem:
( 3 /( 2x+5 )) + ( 21 / (8x^2 + 26x + 15))
= ( 3 /( 2x+5 )) + ( 21 / (8x^2 + 20x + 6x + 15))
= ( 3 /( 2x+5 )) + ( 21 / (4x(2x + 5) + 3(2x + 5))
= ( 3 /( 2x+5 )) + ( 21 /(2x + 5)(4x + 3)
= [ 3 (4x + 3) + 21 ] /(2x + 5)(4x + 3)
= [ 12x + 9 + 21 ] /(2x + 5)(4x + 3)
= [ 12x + 30 ] /(2x + 5)(4x + 3)
= 6(2x + 5) /(2x + 5)(4x + 3)
= 6 / (4x + 3)
<span>I am hoping that
this answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.</span>
Answer: 0.42 and 5 outcomes.
Step-by-step explanation:
i guess that carlos has a fair coin and a number cube.
the probability can be calculated as the number of outcomes that we want divided the total number of outcomes.
The coin has two possible outcomes, heads and tails, then the probability of getting heads is p1 =1/2
the number cube has 6 numbers, 5 of those 6 numbers are greater than 1, then the probability of getting a number greater than 1 is p2 =5/6
the joint probability is the product of those two:
P = 1/2*5/6 = 5/12 = 0.42
The combinations that include heads and number greater than 1 are 5 combinations:
Heads and 2
Heads and 3
Heads and 4
Heads and 5
Heads and 6.
0.5-2(0)^2
0.5-0
0.5
ez
desmos to graph
Answer:
Step-by-step explanation:
uh..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................