H2SO4 ---> 2H^+ + SO4^2-
Hence n H+ = 9 mols
Mass of H = nM = (9*1) = 9g
Alternately
mass of H2SO4= nM= 4.5*98= 441
Mass of H= mass h2so4 * molar mass of H/molar mass of h2so4
Mass of H= 441 * 2/98 = 9g
Answer:
2.2×10^8
Explanation:
Cu(OH)2(s)<---------> Cu^2+(aq) + 2OH^-(aq) Ksp=2.2 x 10 ^-20
2H3O^+(aq) + 2OH^-(aq) <-------> 4H2O(l). Kw= 1×10^14
Cu^2+(aq) + 4H2O(l) <--------> [Cu(H2O)4]^2+(aq)
Overall ionic reaction:
Cu(OH)2(s) +2H3O^+(aq) <---------> [Cu(H20)4]^2+(aq)
Equilibrium constant for the reaction: Ksp×Kw= 2.2 x 10 ^-20 × (1/(1×10^-14))^2
Keq= 2.2×10^8
Kw= ion dissociation constant of water
Answer:
2= its color
Explanation:
Transition elements are present in the middle of periodic table. These are d-block elements.
These are 38 elements.
All transition elements have partially filled d orbitals.
They showed color in compound because of d-d transition.
During the d-d transition electron absorbed the energy and emit the reminder energy. The emission is usually in the form of color light.
The color of ion is complementary to the absorbed color.
The transition elements are used as a catalyst in industries such as polymer, petroleum industries.
They are ductile, conduct heat and electricity.
The answer to that question would be Activation energy. If would like me to elaborate just let me know. :)
You can determine the number of electrons by valence electrons