Mass of ammonia produced : 121.38 g
<h3>Further explanation</h3>
Given
Reaction
3H₂(g) + N₂(g) ⇒ 2NH₃(g)
100g of N₂
Required
Ammonia produced
Solution
mol of N₂ :

From the equation, mol ratio of N₂ and NH₃ = 1 : 2, so mol NH₃ :

mass of NH₃(MW=17 g/mol) :

Answer:
1.13 moles Au
Explanation:
Moles Au = 6.80x10²³atoms / 6.023x10²³atoms/mole = 1.13 moles Au
Answer: 35.4 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
Molality = 2.65
n= moles of solute =?
= volume of solution in ml = 445 ml
Putting in the values we get:


Mass of solute in g=
Thus 35.4 grams of
is needed to prepare 445 ml of a 2.65 m solution of
.
<u>Given:</u>
Diameter of a red blood cell = 0.000008
<u>To determine:</u>
The scientific notation corresponding to the given number
<u>Explanation:</u>
Scientific notation is a concise way of representing a very large or small number. It is written in two parts:
Given Number = Digits * Power of 10
In this case we have:
0.000008 = 8.0 * 10⁻⁶
Answer:
No.
Explanation:
The reason comes the <em>Law of Conservation of Mass</em>.
In an ordinary chemical reaction, <em>you cannot create or destroy atoms</em>.
So, you must have as many atoms at the beginning of a reaction (in the reactants) as at the end (in the products)
We use this principle to balance chemical equations.
For example, the equation for the formation of water from hydrogen and oxygen is
2H₂ + O₂ ⟶ 2H₂O
There are four atoms of H and two of O both before and after the reaction.