<span>C7H8
First, determine the number of relative moles of each element we have and the molar masses of the products.
atomic mass of carbon = 12.0107
atomic mass of hydrogen = 1.00794
atomic mass of oxygen = 15.999
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
We have 5.27 mg of CO2, so
5.27 / 44.0087 = 0.119749 milli moles of CO2
And we have 1.23 mg of H2O, so
1.23 / 18.01488 = 0.068277 milli moles of H2O
Since there's 1 carbon atom per CO2 molecule, we have
0.119749 milli moles of carbon.
Since there's 2 hydrogen atoms per H2O molecules, we have
2 * 0.068277 = 0.136554 milli moles of hydrogen atoms.
Now we need to find a simple integer ratio that's close to
0.119749 / 0.136554 = 0.876937
Looking at all fractions n/m where n ranges from 1 to 10 and m ranges from 1 to 10, I find a closest match at 7/8 = 0.875 with an error of only 0.001937, the next closest match has an error over 6 times larger. So let's go with the 7/8 ratio.
The numerator in the ratio was for carbon atoms, and the denominator was for hydrogen. So the empirical formula for toluene is C7H8.</span>
1kg of water has greater internal energy compared to 1g of water because 1kg of water has more mass.
Answer:
6× 10⁸
Explanation:
We need to find the multiplication of 2 x 10⁴ by 3 x 10⁴.
2 x 10⁴ × 3 x 10⁴
= (3 × 2) x 10⁴ x 10⁴
= 6 x 10⁴ x 10⁴
= 6 × 10⁴⁺⁴
= 6× 10⁸
Hence, the required answer is 6× 10⁸.
<span>Answer:
Connect the atoms with single bonds. The less electronegative is the phosphorous atom. Hence, the P atom is going to be the central atom. Recall that electronegativity decreases as we move away from the fluorine atom in the periodic chart.
Simple method for drawing Lewis dot structures</span>
Answer:
The mass of oxygen is 12.10 g.
Explanation:
The decomposition reaction of potassium chlorate is the following:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
We need to find the number of moles of KClO₃:

Where:
m: is the mass = 30.86 g
M: is the molar mass = 122.55 g/mol
Now, we can find the number of moles of O₂ knowing that the ratio between KClO₃ and O₂ is 2:3
Finally, the mass of O₂ is:

Therefore, the mass of oxygen is 12.10 g.
I hope it helps you!