Hello :D
Answer:
A. 
Step-by-step explanation:
First, you add by 14 both sides of an equation.
-14-5y+14>-64+14
Then, simplify by equation.
-64+14=-50
-5y>-50
Multiply -1 both sides.
(-5y)(-1)<(-50)(-1)
5y<50
Divide by 5 both sides of an equation.
5y/5<50/5
Divide numbers from left to right.
50/5=10
y<10 is the correct answer.
Hope this helps you! :D
Answer: The dimensions are: " 1.5 mi. × ³⁄₁₀ mi. " .
_______________________________________________
{ length = 1.5 mi. ; width = ³⁄₁₀ mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:
A = L * w ;
in which: A = Area = (9/20) mi.² ,
L = Length = ?
w = width = (1/5)*L = (L/5) = ?
________________________________________
A = L * w ; we want to find the dimensions; that is, the values for
"Length (L)" and "width (w)" ;
_______________________________________
Plug in our given values:
_______________________________________
(9/20) mi.² = L * (L/5) ; in which: "w = L/5" ;
→ (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
↔ L² / 5 = 9/20 ;
→ (L² * ? / 5 * ?) = 9/20 ?
→ 20÷5 = 4 ; so; L² *4 = 9 ;
↔ 4 L² = 9 ;
→ Divide EACH side of the equation by "4" ;
→ (4 L²) / 4 = 9/4 ;
______________________________________
to get: → L² = 9/4 ;
Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________
→ ⁺√(L²) = ⁺√(9/4) ;
→ L = (√9) / (√4) ;
→ L = 3/2 ;
→ w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??
→ (3/2)mi. * (3/10)mi. = (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are:
Length = (3/2) mi. ; write as: 1.5 mi.
width = ³⁄₁₀ mi.
___________________________________________________
or; write as: " 1.5 mi. × ³⁄₁₀ mi. " .
___________________________________________________
Answer:
a) 1.
Step-by-step explanation:
Supongamos que el primer número entero positivo es a tal que a ∈ Z⁺.
Luego, el conjunto de los cinco enteros positivos se puede expresar como
A = {a; a+1; a+2; a+3; a+4}
Dada la condición del problema, se debe cumplir que
a + (a+1) + (a+2) = (a+3) + (a+4)
⇒ 3a + 3 = 2a + 7
Resolviendo la ecuación resulta
a = 4
Luego, el conjunto A nos resulta
A = {4; 5; 6; 7; 8}
Puede concluirse que sólo un conjunto cumple con esta condición.
Answer:
I65.18
Step-by-step explanation:
I found this online I hope this helps