1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
5

Another path in the community is 2.1 miles long. It has benches at 1/3 And 2/3 of the distance from beginning to end of the path

. How far in miles (5280=one mile ) is each bench from the beginning of the path?
Mathematics
1 answer:
emmasim [6.3K]3 years ago
5 0

Answer:

bench at 1/3 is at 0.7 miles

bench at 2/3 is at 1.4 miles

Step-by-step explanation:

Given

Path length, x= 2.1 miles

It has benches at 1/3 And 2/3 of the distance from beginning to end of the path

1/3 of the distance from beginning to end of the path= 1/3x

Putting value of x in above we get:

                  =1/3(2.1)

                  =2.1/3

                  =0.7

The bench at 1/3 of the distance is at 0.7 miles from the beginning to end of path

2/3 of the distance from beginning to end of the path= 2/3x

Putting value of x in above we get:

                  =2(2.1)/3

                  =4.2/3

                  =1.4

The bench at 2/3 of the distance is at 1.4 miles from the beginning to end of path!

You might be interested in
Answer all of the questions below in order to determine the volume of the rectangular prism. 10 3 5 Press the play button: play
soldier1979 [14.2K]

Answer:

10, 50, 150

Step-by-step explanation:

i just did it lol.

7 0
2 years ago
Will reward brainliest!
Lina20 [59]

Option D: Two irrational solutions

Explanation:

The equation is 17+3 x^{2}=6 x

Subtracting 6x from both sides, we have,

3x^{2} -6x+17=0

Solving the equation using quadratic formula,

x=\frac{6 \pm \sqrt{36-4(3)(17)}}{2(3)}

Simplifying the expression, we get,

\begin{aligned}x &=\frac{6 \pm \sqrt{36-204}}{6} \\&=\frac{6 \pm \sqrt{-168}}{6} \\&=\frac{6 \pm 2 i \sqrt{42}}{6}\end{aligned}

Taking out the common terms and simplifying, we have,

\begin{aligned}x &=\frac{2(3 \pm i \sqrt{42})}{6} \\&=\frac{(3 \pm i \sqrt{42})}{3}\end{aligned}

Dividing by 3, we get,

x=1+i \sqrt{\frac{14}{3}}, x=1-i \sqrt{\frac{14}{3}}

Hence, the equation has two irrational solutions.

8 0
3 years ago
Helppppppppppp:)))))))))
Whitepunk [10]

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

4 0
2 years ago
I really need help with this question
Step2247 [10]

Answer:

option (b) -3(3w-3.1)

7 0
3 years ago
Read 2 more answers
Find the center and radius for the circle by the equations: x2 + y2 + 5x - y + 2 = 0.
lord [1]
X2+5x+y2-y=-2
X2+2*5x2+(5/2)^2-(5/2)^2+y2-2*y/2+(1/2)^2-(1/2)^2=-2
(x+5/2)^2+(y-1/2)^2-13/2=-2
(x+5/2)^2+(y-1/2)^2=9/2
So centre =(-5/2,1/2)
Radius=(9/2)^(1/2)
7 0
3 years ago
Other questions:
  • find two consecutive even integers such that five times the smaller integer is ten more than three times the larger integer
    7·1 answer
  • A tax cut ________ aggregate demand and ________. A. decreases; shifts the AD curve leftward B. decreases; shifts the AD curve r
    9·1 answer
  • The product of two consecutive integers is 72. The equation x(x + 1) = 72 represents the situation, where x
    13·2 answers
  • 5(x – 10) = 30 – 15x x = 1
    7·2 answers
  • How to solve 9x 4 2/5 in words
    10·1 answer
  • I had $3
    9·1 answer
  • HOMEWORKKKKKKKKKKKKKKKKKKKKKKKK
    12·1 answer
  • Math. Find Mid point and fx​
    13·1 answer
  • GEOMETRY HELP ME PLEASE ASAP
    10·1 answer
  • 2. Which value correctly completes the statement?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!