Answer:
<h2>Density = 0.00026 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of air = 1.2 g
volume = 4,555 mL
Substitute the values into the above formula and solve for the density
That's
<h3>

</h3>
= 0.0002634
We have the final answer as
<h3>Density = 0.00026 g/mL</h3>
Hope this helps you
Answer:
Antoine Lavoisier and Johann Wolfang Döbereiner organized the elements based on properties such as how the elements reacts or whether they are solid or liquid.
Explanation:
The periodic table of the elements as we have it today was developed as a result of the work of several notable centuries who lived centuries apart, all of who made notable contributions to development of the modern periodic table in use today.
In 1789, Antoine Lavoisier, a French Chemist provided a definition of elemets which he defined as a substance whose smallest units cannot be broken down into a simpler substance. He further grouped the elements into two as metals and nonmetals.
In 1829, German physicist Johann Wolfang Döbereiner arranged elements in groups of three in increasing order of atomic weight and called them triads. His arrangement owasf elements into triads was based on his observation of similarities in physical and chemical properties of certain elements.
John Newlands, a British Chemist was the first to arrange the elements into a periodic table with increasing order of atomic masses.
In 1869, Russian chemist Dmitri Mendeleev developed a periodic table which provided a framework the modern periodic table. He arranged the elements according to their atomic weight, leaving gaps for elements that were yet to be discovered.
The modern periodic table arranges elements based on increasing atomic number.
Answer:
The right solution is "
".
Explanation:
As we know,
1 mole electron = 
Total energy = 
= 
For single electron,
The amount of energy will be:
= 
= 
Answer:
Exergonic ,Endergonic,low concentration area,high
Explanation:
In exergonic reaction,certain molecules are broken down;in the process they release energy which is captured when high energy molecules(such as ATP and NADH) are formed.
The breakdown of these molecules can be coupled to thermodynamically unfavorable processes such as Endergonic reactions or pumping og hydrogen ion from low concentration areas to high concentration areas.