Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
The relation between the volume of the gas and the temperature is established by Charles's law. With a decrease in the temperature, the volume decreases by 45.7 mL. Thus, option c is correct.
<h3>What is Charle's law?</h3>
Charle's law states the direct relation present between the temperature and the volume of the gas. The law is given as:
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
V₁ = 50 mL
T₁ = 303.15 K
T₂ = 277.15 K
Substituting the value the final volume is calculated as:
50 ÷ 303.15 = V₂ ÷ 277.15
V₂ = (50 × 277.15) ÷ 303.15
= 45.71 mL
Therefore, option c. 45.7 mL is the final volume.
Learn more about Charles law here:
brainly.com/question/16927784
#SPJ1
For the purpose we will use solution dilution equation:
c1xV1=c2xV2
Where, c1 - concentration of stock solution; V1 - a volume of stock solution needed to make the new solution; c2 - final concentration of new solution; V2 - final volume of new solution.
c1 = 5.00 M
c2 = 0.45 M
V1 = ?
V2 = 108 L
When we plug values into the equation, we get following:
5 x V1 = 0.45 x 108
<span>V1 = </span>9.72 L
Density = mass/volume = 2000/4000 = 0.5 grams/cm3. Hope this hopes!
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2