0.37 kilogramme is the same as 370 grams
As wavelength increases so does frequency
Answer:
1.14 atm and 1.139 mol
Explanation:
The <em>total pressure</em> of the container is equal to the <u>sum of the partial pressure of the three gasses</u>:
- P = Poxygen + Pnitrogen + Pcarbon dioxide
- 2.50 atm = 0.52 + 0.84 + Pcarbon dioxide
Now we <u>solve for the pressure of carbon dioxide</u>:
- Pcarbon dioxide = 1.14 atm
To c<u>alculate the number of CO₂ moles </u>we use <em>PV=nRT</em>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 32 °C ⇒ 32 + 273.16 = 305.16 K
1.14 atm * 25.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305.16 K
To determine the absolute pressure of this gas, all you need to do is to add the value of atmospheric pressure and the value of gage pressure.
Atmospheric pressure is equivalent to 100 kPa.
Gage pressure is 276 kPa.
Then, we add both values.
N = 100 kPa + 276 kPa
N = 376 kPa
The absolute pressure of this gas is 376 kPa.
Hope this helps :)