Answer:
288
Step-by-step explanation:
took the quiz
Answer:
Here is the complete question (attachment).
The function which represent the given points are 
Step-by-step explanation:
We know that a general exponential function is like,
We can find the answer by hit and trial method by plugging the values of
coordinates.
Here we are going to solve this with the above general formula.
So as the points are
then for 
Can be arranged in terms of the general equation.
...equation(1) and
...equation(2)

Plugging the values in equation 2.
We have
![\frac{16}{b} b^4=128,16\times b^3=128,b=\sqrt[3]{\frac{128}{16}} =\sqrt[3]{8}=2](https://tex.z-dn.net/?f=%5Cfrac%7B16%7D%7Bb%7D%20b%5E4%3D128%2C16%5Ctimes%20b%5E3%3D128%2Cb%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B128%7D%7B16%7D%7D%20%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Plugging
in equation 1.
We have 
Comparing with the general equation of exponential
and 
So the function which depicts the above points =
From theoption we have B as the correct answer.
You're question asks why the given mixed numbers are equal.
In fact, they're equal.
Lets make it easier for you to understand:
8 4/3 has a improper fraction "4/3", that fraction is over 1 whole.
You could look at 8 4/3 as:
8 + 3/3 + 1/3
The 3/3 turns into 1:
8 + 1 + 1/3
9 + 1/3
9 1/3
You would see that it turns into 9 1/3, therefore they are equal.
Answer:
a is 39
b is 57
Step-by-step explanation:
you were given two different expressions to substitute.
the first one is p = 8 and d = 1/7
so we substitute into 5p - 7d
that is 5(8) - 7(1/7)
we get 40 - 1
which if we go ahead to evaluate we get 39
The second one p = 3 and d = -6
so we get 5(3) - 7(-6)
we get 15 - (-42)
if we go ahead to evaluate we get 15 + 42
two negative meeting each other gives you positive.
then it going too be 57
Hey there! Hello!
This can be represented by the equation y=2.54x, where:
y=measurement in inches
x=measurement in cm
You can plug any value into this problem to reveal that this is a linear function. I provided a graph of this to further prove the point.
Hope this helped you out, feel free to ask any additional questions if you need further clarification! :-)