1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
15

Integrate this for me please

Mathematics
2 answers:
pashok25 [27]3 years ago
6 0
Let's do a variable substitution, by the formula \int u\,dv=uv-\int v\,du

I=\int\tan^2(x)\sec^4(x)dx=\int\underbrace{\tan(x)\sec^3(x)}_{u}\underbrace{\tan(x)\sec(x)dx}_{dv}\\ u=\tan(x)\sec^3(x)\\\\ du=(\sec^5(x)+3\sec^3(x)\tan^2(x))dx\\\\ du=\sec^3(x)(\underbrace{\sec^2(x)}_{\tan^2+1}+3\tan^2(x))dx\\\\ du=\sec^3(x)(4\tan^2(x)+1)dx\\\\\\ dv=\sec(x)\tan(x)dx\\\\ v=\sec(x)

So:

I=\tan(x)\sec^4(x)-\int\sec^4(x)(4\tan^2(x)+1)dx\\\\ I=\tan(x)\sec^4(x)-4\underbrace{\int\sec^4(x)\tan^2(x)dx}_{I}-\int\sec^4(x)dx\\\\ I=\tan(x)\sec^4(x)-4I-\int\sec^4(x)dx\\\\ 5I=\tan(x)\sec^4(x)-\underbrace{\int\sec^4(x)dx}_{I_2}\\\\

Solving I₂ using substitution, too:

I_2=\int\sec^4(x)dx=\int\underbrace{\sec^2(x)}_{u}\underbrace{\sec^2(x)dx}_{dv}\\\\\\ u=\sec^2(x)\\\\ du=2\sec^2(x)\tan(x)dx\\\\\\ dv=\sec^2(x)dx\\\\ v=\tan(x)

Then:

I_2=\tan(x)\sec^2(x)-\int 2\tan^2(x)\sec^2(x)dx\\\\ I_2=\tan(x)\sec^2(x)-2\int\tan^2(x)\sec^2(x)dx\\\\\\ y=\tan(x)\to dy=\sec^2(x)dx\to dx=\dfrac{dy}{\sec^2(x)}\\\\ \tan^2(x)\sec^2(x)dx=y^2\sec^2(x)\dfrac{dy}{\sec^2(x)}=y^2dy\\\\\\ I_2=\tan(x)\sec^2(x)-2\int y^2dy\\\\ I_2=\tan(x)\sec^2(x)-2\cdot\dfrac{y^3}{3}\\\\ I_2=\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x)

Hence, substituting I₂ in I:

5I=\tan(x)\sec^4(x)-I_2\\\\ 5I=\tan(x)\sec^4(x)-(\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x))\\\\ 5I=\tan(x)\sec^4(x)-\tan(x)\sec^2(x)+\frac{2}{3}\tan^3(x))\\\\ \boxed{I=\frac{1}{5}\tan(x)\sec^4(x)-\frac{1}{5}\tan(x)\sec^2(x)+\frac{2}{15}\tan^3(x)+C}

Now, using the limits of integration in the expression E of the statement:

E=\displaystyle\int^{\dfrac{\pi}{6}}_0\tan^2(x)\sec^4(x)dx\\\\\\ E=(\frac{1}{5}\tan(\frac{\pi}{6})\sec^4(\frac{\pi}{6})-\frac{1}{5}\tan(\frac{\pi}{6})\sec^2(\frac{\pi}{6})+\frac{2}{15}\tan^3(\frac{\pi}{6}))-\\\\ (\frac{1}{5}\tan(0)\sec^4(0)-\frac{1}{5}\tan(0)\sec^2(0)+\frac{2}{15}\tan^3(0))\\\\\\ E=(\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^4-\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^2+\frac{2}{15}(\frac{1}{\sqrt3})^3)-\\\\ (\frac{1}{5}\cdot0\cdot1^4-\frac{1}{5}\cdot0\cdot1^2+\frac{2}{15}\cdot0^3)


E=\frac{1}{5\sqrt3}\cdot\frac{16}{9}-\frac{1}{5\sqrt3}\cdot\frac{4}{3}+\frac{2}{15}\cdot\frac{1}{3\sqrt3}-0+0-0\\\\\ E=\frac{1}{5\sqrt3}(\frac{16}{9}-\frac{4}{3}+\frac{2}{9})\\\\ E=\frac{1}{5\sqrt3}\cdot\frac{16-12+2}{9}=\frac{1}{5\sqrt3}\cdot\frac{6}{9}=\frac{1}{5\sqrt3}\cdot\frac{2}{3}\\\\ \boxed{E=\dfrac{2}{15\sqrt3}}
mel-nik [20]3 years ago
5 0
\int\limits_{0}^{\frac{\pi }{6}}tan^2(x)sec^2(x)\cdot dx
\\------------------\\
u=tan(x)\implies \frac{du}{dx}=sec^2(x)\implies \frac{du}{sec^2(x)}=dx
\\------------------\\
\int\limits_{0}^{\frac{\pi }{6}}u^2sec^2(x)\cdot \cfrac{du}{sec^2(x)}\implies 
\int\limits_{0}^{\frac{\pi }{6}}u^2\cdot du
\\ \quad \\


\textit{now, we need to change the bounds as well, so}
\\------------------\\
u(0)=tan(0)\implies 0
\\ \quad \\

u\left( \frac{\pi }{6} \right)=tan\left( \frac{\pi }{6} \right)\implies \frac{1}{\sqrt{3}}
\\------------------\\
thus\implies \int\limits_{0}^{\frac{1 }{\sqrt{3}}}u^2\cdot du

and surely you can take it from there,
recall, that, since we changed the bounds, with the u(x),
you don't need to change the variable "u", and simply,
get the integral of it, simple enough, and apply those bounds
You might be interested in
A solid figure with flat faces
Vaselesa [24]
A cube i hope i helped!
4 0
3 years ago
Read 2 more answers
What do the following two equations represent? <br> y = 6x -2 <br> 2x – 12y = 24
maxonik [38]

Answer: Intersecting, but not perpendicular lines

Step-by-step explanation:

3 0
3 years ago
Y=4x and x+y=5 6-2 substitution
fiasKO [112]

Answer:

x=1, y=4. (1, 4).

Step-by-step explanation:

y=4x

x+y=5

----------

x+4x=5

5x=5

x=5/5

x=1

y=4(1)=4

5 0
3 years ago
Please help me and include step by step!!!<br> (x+9)(x-9) Polynomial identities
WITCHER [35]

Answer:

The given expression is simplified as (x + 9)(x -9)  = x^{2}   - 81

Step-by-step explanation:

Here,the given expression is (x+9)(x -9)

Using the ALGEBRAIC IDENTITY:

(a +b)(a -b)  = a^2  - b^2

Now, here in the given expression (x + 9)(x -9)

Comparing it the left side of the identity,

we get  a  =  x

    and  b = 9

The right side of the equation is a^{2}   - b^{2}

Substituting the value of a and b, we get

⇒ (x + 9)(x -9)  =   (x)^{2}   - (9)^{2}

= x^{2}   - 81

Hence, the given expression is simplified as (x + 9)(x -9)  = x^{2}   - 81

4 0
3 years ago
What number is missing from this pattern1,5,13,25,_,61,85
katrin2010 [14]
First number is 5.
second  is 5 + (4 * 2) = 5 + 8 = 13

third is 5 + (4 * 2) * (4 * 3) = 5 + 8  + 12 = 25

fourth is 5 + (4 * 2) * (4 * 3) + (4 * 4) = 5 + 8  + 12  + 16 = 41

fifth is 5 + (4 * 2) * (4 * 3) + (4 * 4) + (4 * 5) = 5 + 8  + 12  + 16  + 20 = 61

sixth is 5 + (4 * 2) * (4 * 3) + (4 * 4) + (4 * 5) + (4 * 6) = 5 + 8  + 12  + 16  + 20 + 24 = 85

So missing number is 41
4 0
3 years ago
Other questions:
  • I don't know how to solve this.....<br><br> -16<br> ---------<br> +12
    5·2 answers
  • Find the range of f(x) = –x + 4 for the domain {–3, –2, –1, 1}.
    15·1 answer
  • What are the first four terms of the sequence shown below? <br><br> an = n3 + n2
    12·1 answer
  • A number pattern starts with 4 and follows the rule "add 5." What are the first five
    5·1 answer
  • Need help!! plzz help asap​
    11·1 answer
  • It takes 24 cups of chicken broth to make a chicken soup recipe. How much is this in quarts? ​
    7·1 answer
  • Can anybody help me? No links please lol
    14·2 answers
  • Find x and decide if that side (with the x) is an Altitude
    9·1 answer
  • Helpmeeeeeeeeeeeeeeeeeeee
    10·1 answer
  • Im cyril anne bato you what your name​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!