1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
2 years ago
15

Integrate this for me please

Mathematics
2 answers:
pashok25 [27]2 years ago
6 0
Let's do a variable substitution, by the formula \int u\,dv=uv-\int v\,du

I=\int\tan^2(x)\sec^4(x)dx=\int\underbrace{\tan(x)\sec^3(x)}_{u}\underbrace{\tan(x)\sec(x)dx}_{dv}\\ u=\tan(x)\sec^3(x)\\\\ du=(\sec^5(x)+3\sec^3(x)\tan^2(x))dx\\\\ du=\sec^3(x)(\underbrace{\sec^2(x)}_{\tan^2+1}+3\tan^2(x))dx\\\\ du=\sec^3(x)(4\tan^2(x)+1)dx\\\\\\ dv=\sec(x)\tan(x)dx\\\\ v=\sec(x)

So:

I=\tan(x)\sec^4(x)-\int\sec^4(x)(4\tan^2(x)+1)dx\\\\ I=\tan(x)\sec^4(x)-4\underbrace{\int\sec^4(x)\tan^2(x)dx}_{I}-\int\sec^4(x)dx\\\\ I=\tan(x)\sec^4(x)-4I-\int\sec^4(x)dx\\\\ 5I=\tan(x)\sec^4(x)-\underbrace{\int\sec^4(x)dx}_{I_2}\\\\

Solving I₂ using substitution, too:

I_2=\int\sec^4(x)dx=\int\underbrace{\sec^2(x)}_{u}\underbrace{\sec^2(x)dx}_{dv}\\\\\\ u=\sec^2(x)\\\\ du=2\sec^2(x)\tan(x)dx\\\\\\ dv=\sec^2(x)dx\\\\ v=\tan(x)

Then:

I_2=\tan(x)\sec^2(x)-\int 2\tan^2(x)\sec^2(x)dx\\\\ I_2=\tan(x)\sec^2(x)-2\int\tan^2(x)\sec^2(x)dx\\\\\\ y=\tan(x)\to dy=\sec^2(x)dx\to dx=\dfrac{dy}{\sec^2(x)}\\\\ \tan^2(x)\sec^2(x)dx=y^2\sec^2(x)\dfrac{dy}{\sec^2(x)}=y^2dy\\\\\\ I_2=\tan(x)\sec^2(x)-2\int y^2dy\\\\ I_2=\tan(x)\sec^2(x)-2\cdot\dfrac{y^3}{3}\\\\ I_2=\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x)

Hence, substituting I₂ in I:

5I=\tan(x)\sec^4(x)-I_2\\\\ 5I=\tan(x)\sec^4(x)-(\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x))\\\\ 5I=\tan(x)\sec^4(x)-\tan(x)\sec^2(x)+\frac{2}{3}\tan^3(x))\\\\ \boxed{I=\frac{1}{5}\tan(x)\sec^4(x)-\frac{1}{5}\tan(x)\sec^2(x)+\frac{2}{15}\tan^3(x)+C}

Now, using the limits of integration in the expression E of the statement:

E=\displaystyle\int^{\dfrac{\pi}{6}}_0\tan^2(x)\sec^4(x)dx\\\\\\ E=(\frac{1}{5}\tan(\frac{\pi}{6})\sec^4(\frac{\pi}{6})-\frac{1}{5}\tan(\frac{\pi}{6})\sec^2(\frac{\pi}{6})+\frac{2}{15}\tan^3(\frac{\pi}{6}))-\\\\ (\frac{1}{5}\tan(0)\sec^4(0)-\frac{1}{5}\tan(0)\sec^2(0)+\frac{2}{15}\tan^3(0))\\\\\\ E=(\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^4-\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^2+\frac{2}{15}(\frac{1}{\sqrt3})^3)-\\\\ (\frac{1}{5}\cdot0\cdot1^4-\frac{1}{5}\cdot0\cdot1^2+\frac{2}{15}\cdot0^3)


E=\frac{1}{5\sqrt3}\cdot\frac{16}{9}-\frac{1}{5\sqrt3}\cdot\frac{4}{3}+\frac{2}{15}\cdot\frac{1}{3\sqrt3}-0+0-0\\\\\ E=\frac{1}{5\sqrt3}(\frac{16}{9}-\frac{4}{3}+\frac{2}{9})\\\\ E=\frac{1}{5\sqrt3}\cdot\frac{16-12+2}{9}=\frac{1}{5\sqrt3}\cdot\frac{6}{9}=\frac{1}{5\sqrt3}\cdot\frac{2}{3}\\\\ \boxed{E=\dfrac{2}{15\sqrt3}}
mel-nik [20]2 years ago
5 0
\int\limits_{0}^{\frac{\pi }{6}}tan^2(x)sec^2(x)\cdot dx
\\------------------\\
u=tan(x)\implies \frac{du}{dx}=sec^2(x)\implies \frac{du}{sec^2(x)}=dx
\\------------------\\
\int\limits_{0}^{\frac{\pi }{6}}u^2sec^2(x)\cdot \cfrac{du}{sec^2(x)}\implies 
\int\limits_{0}^{\frac{\pi }{6}}u^2\cdot du
\\ \quad \\


\textit{now, we need to change the bounds as well, so}
\\------------------\\
u(0)=tan(0)\implies 0
\\ \quad \\

u\left( \frac{\pi }{6} \right)=tan\left( \frac{\pi }{6} \right)\implies \frac{1}{\sqrt{3}}
\\------------------\\
thus\implies \int\limits_{0}^{\frac{1 }{\sqrt{3}}}u^2\cdot du

and surely you can take it from there,
recall, that, since we changed the bounds, with the u(x),
you don't need to change the variable "u", and simply,
get the integral of it, simple enough, and apply those bounds
You might be interested in
1. The speed of a motorcycle increases from 10 km/hr to 50 km/hr in 9
liraira [26]

Answer:

The acceleration is 4.4 km/sec/sec

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Andy is one fourth as old as his grandfather who is 76 years old write an equation to determine whether Andy is 19 or 22 years o
iren [92.7K]
76÷4= ; x=19, you divide 76 by 4 because if he is 1/4 then it would be a group of one of the 4's, thus saying ehen you divide 76 by 4, it equals 19, so he is 19 years old, you could also do 19×4 and 22×4 to see which equals 76.
7 0
2 years ago
LoneWolves or anyone plz help me with this math question! I promise I'll mark u brainliest for the absolute right ANSWER
jeyben [28]

Answer:

8 ft^2

Step-by-step explanation:

\frac{h1}{2ft} =\frac{h2}{3ft} \\\\

area of ABC is:

A= \frac{(3ft)(h2)}{2}

area of ABC is 18 square ft, then

h2 = \frac{(area)(2)}{3ft} = \frac{(18 ft^2)(2)}{3ft} =12ft

now you can find h1 and the area for EFG

6 0
2 years ago
Read 2 more answers
Answer question worth 25 points plz help!
Ilya [14]

Answer:

B

Step-by-step explanation:

6 0
3 years ago
Which shows the prime factorization of 36?
leva [86]
A= 24
b= 36
c= 36 
d= 54 
3 0
3 years ago
Other questions:
  • What are 9 decimals that round to 4.56 ?
    8·1 answer
  • For ΔABC, ∠A = 8x - 10, ∠B = 10x - 40, and ∠C = 3x + 20. If ΔABC undergoes a dilation by a scale factor of 1 2 to create ΔA'B'C'
    7·1 answer
  • Given b(x) = |x+4| , what is b(-10)
    9·2 answers
  • plz help me ASAP!!!! Graph the line that represents a proportional relationship between d and t with the property that an increa
    10·1 answer
  • Graph the linear equation
    7·1 answer
  • Help plz like fr someone asapppp help me
    5·1 answer
  • Evaluate the expression when a= -7 and b=2<br>a-4b​
    10·1 answer
  • Using the table, if there are 5 flowers, how many petals are there?
    5·1 answer
  • The melting point of nitrogen is -210 °C. The melting point of magnesium is 650 °C.
    5·1 answer
  • What is the slope of the line represented by 4x-2y=10?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!