1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
15

Integrate this for me please

Mathematics
2 answers:
pashok25 [27]3 years ago
6 0
Let's do a variable substitution, by the formula \int u\,dv=uv-\int v\,du

I=\int\tan^2(x)\sec^4(x)dx=\int\underbrace{\tan(x)\sec^3(x)}_{u}\underbrace{\tan(x)\sec(x)dx}_{dv}\\ u=\tan(x)\sec^3(x)\\\\ du=(\sec^5(x)+3\sec^3(x)\tan^2(x))dx\\\\ du=\sec^3(x)(\underbrace{\sec^2(x)}_{\tan^2+1}+3\tan^2(x))dx\\\\ du=\sec^3(x)(4\tan^2(x)+1)dx\\\\\\ dv=\sec(x)\tan(x)dx\\\\ v=\sec(x)

So:

I=\tan(x)\sec^4(x)-\int\sec^4(x)(4\tan^2(x)+1)dx\\\\ I=\tan(x)\sec^4(x)-4\underbrace{\int\sec^4(x)\tan^2(x)dx}_{I}-\int\sec^4(x)dx\\\\ I=\tan(x)\sec^4(x)-4I-\int\sec^4(x)dx\\\\ 5I=\tan(x)\sec^4(x)-\underbrace{\int\sec^4(x)dx}_{I_2}\\\\

Solving I₂ using substitution, too:

I_2=\int\sec^4(x)dx=\int\underbrace{\sec^2(x)}_{u}\underbrace{\sec^2(x)dx}_{dv}\\\\\\ u=\sec^2(x)\\\\ du=2\sec^2(x)\tan(x)dx\\\\\\ dv=\sec^2(x)dx\\\\ v=\tan(x)

Then:

I_2=\tan(x)\sec^2(x)-\int 2\tan^2(x)\sec^2(x)dx\\\\ I_2=\tan(x)\sec^2(x)-2\int\tan^2(x)\sec^2(x)dx\\\\\\ y=\tan(x)\to dy=\sec^2(x)dx\to dx=\dfrac{dy}{\sec^2(x)}\\\\ \tan^2(x)\sec^2(x)dx=y^2\sec^2(x)\dfrac{dy}{\sec^2(x)}=y^2dy\\\\\\ I_2=\tan(x)\sec^2(x)-2\int y^2dy\\\\ I_2=\tan(x)\sec^2(x)-2\cdot\dfrac{y^3}{3}\\\\ I_2=\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x)

Hence, substituting I₂ in I:

5I=\tan(x)\sec^4(x)-I_2\\\\ 5I=\tan(x)\sec^4(x)-(\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x))\\\\ 5I=\tan(x)\sec^4(x)-\tan(x)\sec^2(x)+\frac{2}{3}\tan^3(x))\\\\ \boxed{I=\frac{1}{5}\tan(x)\sec^4(x)-\frac{1}{5}\tan(x)\sec^2(x)+\frac{2}{15}\tan^3(x)+C}

Now, using the limits of integration in the expression E of the statement:

E=\displaystyle\int^{\dfrac{\pi}{6}}_0\tan^2(x)\sec^4(x)dx\\\\\\ E=(\frac{1}{5}\tan(\frac{\pi}{6})\sec^4(\frac{\pi}{6})-\frac{1}{5}\tan(\frac{\pi}{6})\sec^2(\frac{\pi}{6})+\frac{2}{15}\tan^3(\frac{\pi}{6}))-\\\\ (\frac{1}{5}\tan(0)\sec^4(0)-\frac{1}{5}\tan(0)\sec^2(0)+\frac{2}{15}\tan^3(0))\\\\\\ E=(\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^4-\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^2+\frac{2}{15}(\frac{1}{\sqrt3})^3)-\\\\ (\frac{1}{5}\cdot0\cdot1^4-\frac{1}{5}\cdot0\cdot1^2+\frac{2}{15}\cdot0^3)


E=\frac{1}{5\sqrt3}\cdot\frac{16}{9}-\frac{1}{5\sqrt3}\cdot\frac{4}{3}+\frac{2}{15}\cdot\frac{1}{3\sqrt3}-0+0-0\\\\\ E=\frac{1}{5\sqrt3}(\frac{16}{9}-\frac{4}{3}+\frac{2}{9})\\\\ E=\frac{1}{5\sqrt3}\cdot\frac{16-12+2}{9}=\frac{1}{5\sqrt3}\cdot\frac{6}{9}=\frac{1}{5\sqrt3}\cdot\frac{2}{3}\\\\ \boxed{E=\dfrac{2}{15\sqrt3}}
mel-nik [20]3 years ago
5 0
\int\limits_{0}^{\frac{\pi }{6}}tan^2(x)sec^2(x)\cdot dx
\\------------------\\
u=tan(x)\implies \frac{du}{dx}=sec^2(x)\implies \frac{du}{sec^2(x)}=dx
\\------------------\\
\int\limits_{0}^{\frac{\pi }{6}}u^2sec^2(x)\cdot \cfrac{du}{sec^2(x)}\implies 
\int\limits_{0}^{\frac{\pi }{6}}u^2\cdot du
\\ \quad \\


\textit{now, we need to change the bounds as well, so}
\\------------------\\
u(0)=tan(0)\implies 0
\\ \quad \\

u\left( \frac{\pi }{6} \right)=tan\left( \frac{\pi }{6} \right)\implies \frac{1}{\sqrt{3}}
\\------------------\\
thus\implies \int\limits_{0}^{\frac{1 }{\sqrt{3}}}u^2\cdot du

and surely you can take it from there,
recall, that, since we changed the bounds, with the u(x),
you don't need to change the variable "u", and simply,
get the integral of it, simple enough, and apply those bounds
You might be interested in
An object’s volume is 0.12 kL. What is its volume in liters?
mrs_skeptik [129]

Answer:

120L

Step-by-step explanation:

Given quantity;

    0.12kL to L

Solution:

Convert the given quantity to Liters;

      1000L  = 1kL

So.

        1kL gives 1000L

        0.12kL will be 1000 x 0.12  = 120L

3 0
3 years ago
Story Problems
Gnom [1K]
Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars  
We have Lesley's purchase: 4x+2y=13.50
 And Landon's: 1x+5y=17.55 
 We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55 
 We add this four times to Lesley's purchase to eliminate the x variable.
 2y-20y=13.50-70.2
 -18y=-56.7
 y = $3.15 = Price of box of granola bars
 
 Plug back into Landon's purchase to solve for pretzels.
 x+5*3.15=17.55
 x+15.75=17.55
 x = $1.80 = price of bag of pretzels
  
 Problem 4.
 Let w = number of wood bats sold
 Let m = number of metal bats sold
 
 From sales information we have: w + m = 23
 24w+30m=606 
 Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second. 
 24*(23-m)+30m=606
 552-24m+30m=606
 6m=54
 m=9 = number of metal bats sold
 Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.


6 0
3 years ago
Read 2 more answers
Eight more than four times a number is -12 eauation
Allisa [31]
4x + 8 = -12 is the equation for this statement
8 0
3 years ago
11 minus what number is 7
MA_775_DIABLO [31]
Eleven minus four equal seven
11-4=7
4 0
3 years ago
Iris wants to buy two necklaces, one for her sister and one for herself. The necklace for her sister costs $42.00, and the neckl
Genrish500 [490]

Answer:

$75.60

Step-by-step explanation:

First, find the total cost without tax:

42 + 28

= 70

Then, to find the price with sales tax, multiply this by 1.08:

70(1.08)

= 75.6

So, the total cost of her purchases was $75.60

4 0
3 years ago
Other questions:
  • What is 0.5027 as a percent?
    7·2 answers
  • Solve for x: |x + 2| + 16 = 14
    7·2 answers
  • A cone-shaped container has a height of 9 in. and diameter of 2 in. It is filled with a liquid that is worth $2 per cubic inch.
    6·1 answer
  • 30 ptss!! Simplify the following expression.<br> 3^0
    7·2 answers
  • Kristin goes to the mall and buys a pair of brand name sunglasses on sale
    14·1 answer
  • How many triangles can be constructed using the following three side lengths: 4.8 cm, 2.1 cm, and 2.6 cm?
    11·1 answer
  • What integer represent 10 degrees above zero?
    5·2 answers
  • HELP PLEASEEEEEEEEEEE
    7·1 answer
  • Order the expressions from least value to greatest value.
    11·1 answer
  • Multiply; 0.001 x 0.00001​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!