1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
15

Integrate this for me please

Mathematics
2 answers:
pashok25 [27]3 years ago
6 0
Let's do a variable substitution, by the formula \int u\,dv=uv-\int v\,du

I=\int\tan^2(x)\sec^4(x)dx=\int\underbrace{\tan(x)\sec^3(x)}_{u}\underbrace{\tan(x)\sec(x)dx}_{dv}\\ u=\tan(x)\sec^3(x)\\\\ du=(\sec^5(x)+3\sec^3(x)\tan^2(x))dx\\\\ du=\sec^3(x)(\underbrace{\sec^2(x)}_{\tan^2+1}+3\tan^2(x))dx\\\\ du=\sec^3(x)(4\tan^2(x)+1)dx\\\\\\ dv=\sec(x)\tan(x)dx\\\\ v=\sec(x)

So:

I=\tan(x)\sec^4(x)-\int\sec^4(x)(4\tan^2(x)+1)dx\\\\ I=\tan(x)\sec^4(x)-4\underbrace{\int\sec^4(x)\tan^2(x)dx}_{I}-\int\sec^4(x)dx\\\\ I=\tan(x)\sec^4(x)-4I-\int\sec^4(x)dx\\\\ 5I=\tan(x)\sec^4(x)-\underbrace{\int\sec^4(x)dx}_{I_2}\\\\

Solving I₂ using substitution, too:

I_2=\int\sec^4(x)dx=\int\underbrace{\sec^2(x)}_{u}\underbrace{\sec^2(x)dx}_{dv}\\\\\\ u=\sec^2(x)\\\\ du=2\sec^2(x)\tan(x)dx\\\\\\ dv=\sec^2(x)dx\\\\ v=\tan(x)

Then:

I_2=\tan(x)\sec^2(x)-\int 2\tan^2(x)\sec^2(x)dx\\\\ I_2=\tan(x)\sec^2(x)-2\int\tan^2(x)\sec^2(x)dx\\\\\\ y=\tan(x)\to dy=\sec^2(x)dx\to dx=\dfrac{dy}{\sec^2(x)}\\\\ \tan^2(x)\sec^2(x)dx=y^2\sec^2(x)\dfrac{dy}{\sec^2(x)}=y^2dy\\\\\\ I_2=\tan(x)\sec^2(x)-2\int y^2dy\\\\ I_2=\tan(x)\sec^2(x)-2\cdot\dfrac{y^3}{3}\\\\ I_2=\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x)

Hence, substituting I₂ in I:

5I=\tan(x)\sec^4(x)-I_2\\\\ 5I=\tan(x)\sec^4(x)-(\tan(x)\sec^2(x)-\frac{2}{3}\tan^3(x))\\\\ 5I=\tan(x)\sec^4(x)-\tan(x)\sec^2(x)+\frac{2}{3}\tan^3(x))\\\\ \boxed{I=\frac{1}{5}\tan(x)\sec^4(x)-\frac{1}{5}\tan(x)\sec^2(x)+\frac{2}{15}\tan^3(x)+C}

Now, using the limits of integration in the expression E of the statement:

E=\displaystyle\int^{\dfrac{\pi}{6}}_0\tan^2(x)\sec^4(x)dx\\\\\\ E=(\frac{1}{5}\tan(\frac{\pi}{6})\sec^4(\frac{\pi}{6})-\frac{1}{5}\tan(\frac{\pi}{6})\sec^2(\frac{\pi}{6})+\frac{2}{15}\tan^3(\frac{\pi}{6}))-\\\\ (\frac{1}{5}\tan(0)\sec^4(0)-\frac{1}{5}\tan(0)\sec^2(0)+\frac{2}{15}\tan^3(0))\\\\\\ E=(\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^4-\frac{1}{5}\cdot\frac{1}{\sqrt3}\cdot(\frac{2}{\sqrt3})^2+\frac{2}{15}(\frac{1}{\sqrt3})^3)-\\\\ (\frac{1}{5}\cdot0\cdot1^4-\frac{1}{5}\cdot0\cdot1^2+\frac{2}{15}\cdot0^3)


E=\frac{1}{5\sqrt3}\cdot\frac{16}{9}-\frac{1}{5\sqrt3}\cdot\frac{4}{3}+\frac{2}{15}\cdot\frac{1}{3\sqrt3}-0+0-0\\\\\ E=\frac{1}{5\sqrt3}(\frac{16}{9}-\frac{4}{3}+\frac{2}{9})\\\\ E=\frac{1}{5\sqrt3}\cdot\frac{16-12+2}{9}=\frac{1}{5\sqrt3}\cdot\frac{6}{9}=\frac{1}{5\sqrt3}\cdot\frac{2}{3}\\\\ \boxed{E=\dfrac{2}{15\sqrt3}}
mel-nik [20]3 years ago
5 0
\int\limits_{0}^{\frac{\pi }{6}}tan^2(x)sec^2(x)\cdot dx
\\------------------\\
u=tan(x)\implies \frac{du}{dx}=sec^2(x)\implies \frac{du}{sec^2(x)}=dx
\\------------------\\
\int\limits_{0}^{\frac{\pi }{6}}u^2sec^2(x)\cdot \cfrac{du}{sec^2(x)}\implies 
\int\limits_{0}^{\frac{\pi }{6}}u^2\cdot du
\\ \quad \\


\textit{now, we need to change the bounds as well, so}
\\------------------\\
u(0)=tan(0)\implies 0
\\ \quad \\

u\left( \frac{\pi }{6} \right)=tan\left( \frac{\pi }{6} \right)\implies \frac{1}{\sqrt{3}}
\\------------------\\
thus\implies \int\limits_{0}^{\frac{1 }{\sqrt{3}}}u^2\cdot du

and surely you can take it from there,
recall, that, since we changed the bounds, with the u(x),
you don't need to change the variable "u", and simply,
get the integral of it, simple enough, and apply those bounds
You might be interested in
Round 1,287 to the nearest thousands place
alexdok [17]

Answer:

1000

Step-by-step explanation:

If a number is higher than 5 round up. If its 4 or lower round down

3 0
3 years ago
Read 2 more answers
HELP HELP HELP KAISHSNA
Leokris [45]

Answer:

i think its just the last one

Step-by-step explanation:

because the first two are all real numbers and the thrid equals one

8 0
2 years ago
Area of a circular ring: A = 4<img src="https://tex.z-dn.net/?f=%20%5Cpi%20" id="TexFormula1" title=" \pi " alt=" \pi " align="a
OleMash [197]
1a)      A = 4πpw
      /4πw = /4πw
  A / 4πw = p

1b) A = 4πpw
     22 = 4πp(2)
       p = 11/4π (≈0.87)

2a)        P = 2πr + 2x
      P - 2x = 2πr
        /2π      /2π
 P-2x / 2π = r

2b)    P = 2πr + 2x
      440 = 2πr + 2(110)
          r = 110/π (≈35.014)
      

      
8 0
3 years ago
Please help me I need this done not a lot of work but please get it done with good credit for a good reward and rating!
saw5 [17]

Answer:

what work

Step-by-step explanation:

7 0
3 years ago
WILL MARK BRAINLIEST! Find the area of a circle with a radius of 7 feet ?
Murljashka [212]

Answer:

A = 153.94 ft^2

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Find the difference?
    13·2 answers
  • FIRST RIGHT ANSWER GETS BRAINLLEST If you spin the spinner below 20 times, which of the following outcomes are reasonable? Selec
    6·2 answers
  • A recipe calls for 3 2/3 cups of flour. Earl used 7 1/3 cups. By how much did he increase the recipe
    14·2 answers
  • Leela invests $500 at 4.5% interest according to the equation mc018-1.jpg, where Vl is the value of the account after t years. A
    10·2 answers
  • Find the slope of the line parallel to the given line.<br> y= 2/5x+2
    7·1 answer
  • a company makes wax candles in the shape of a cyclinder. each candle has a radius of 4 inches and a height of 2 inches. how much
    5·1 answer
  • Correctly complete this sequence: 88511, 16351, ?, 10251
    10·1 answer
  • Please help i dont understand this at all
    9·1 answer
  • Misha and Nora want to buy season passes for a ski lift but neither of them has the $225 needed to purchase a
    5·1 answer
  • What is the exact length of the missing side of the triangle if the legs are 12 cm and 13 cm?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!