Answer:
- 150π ft²
- 10π ft.
Step-by-step explanation:
Area of the sector :

Finding the area given r = 30 ft. and θ = 60° :
⇒ Area = π × (30)² × 60/360
⇒ Area = π × 900/6
⇒ Area = 150π ft²
===========================================================
Length of the arc :

Finding the arc length given r = 30 ft. and θ = 60° :
⇒ Arc Length = 2 × π × 30 × 60/360
⇒ Arc Length = 60/6 × π
⇒ Arc Length = 10π ft.
Answer: The fourth one
Step-by-step explanation:
Hello :
<span>The circumference of the circle is 24π inches
</span>
<span>The length of the arc is (100/360)×24π = 20.93 inches
</span><span>(The complete circumference would cover 360°. Angle
ALB is 100°)<span> </span></span>
Answer:
width=60 length=540
Step-by-step explanation:
(w+9w)*2=1200
You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?