Answer:
Vf = 41.6 [m/s].
Explanation:
To solve this problem we must use the equations of kinematics.
Vf² = Vo² + (2*g*y)
where:
Vf = final velocity [m/s]
Vo = initial velocity = 0
g = gravity acceleration = 9.81 [m/s²]
y = height = 88.2 [m]
Note: The positive sign of the equation tells us that the acceleration of gravity goes in the direction of motion.
Vf² = Vo² + (2*g*y)
Vf² = 0 + (2*9.81*88.2)
Vf = (1730.48)^0.5
Vf = 41.6 [m/s]
Answer:
The spacing between the slits is
Explanation:
From the question we are told that
The wavelength of the light is 
The distance of the slit from the screen is 
The number of bright fringe is 
The length the fringes span is 
The fringe width (i.e the distance of between two successive bright or dark fringe) is mathematically represented as

Where d is the distance between the slits
is the fringe width which can also be evaluated as

Substituting values


Making d the subject of formula in the above equation

Substituting values

Answer:
option D
Explanation:
given,
wavelength = 600 nm
width of separation = 0.02 mm
L = 5 m
for mth order maxima

for (m+1)th order maxima

now,
and

hence,





hence, the correct answer is option D
Answer: 1608.39 J
Explanation: Given that the
mass M = 42kg
U = 11.5m/s
V = 3.33m/s
how much work did friction do
Work done = Force × distance
Work done = Ma × distance
But acceleration a = V/t
Work done = M × V/t × d
Work done = M × V × d/t
Where d/t = velocity
Therefore,
Work done = M × U × V
Work done = 42 × 11.5 × 3.33
Work done = 1608.39 J